EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Monolithic Lagrangian Meshfree Method for Fluid structure Interaction

Download or read book A Monolithic Lagrangian Meshfree Method for Fluid structure Interaction written by Xinyang Liu and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study is a verification and validation of a monolithic Lagrangian meshfree method. In this thesis, we present a simultaneous solution procedure for fluid-structure interaction (FSI) problems. The governing equations for both fluid and structure domain are formulated under Lagrangian configuration. The Optimal Transportation Meshfree (OTM) method is applied to simulate the FSI problems. A dynamic mesh generation algorithm for open systems is developed to address the limitation of fixed total mass in Lagrangian solutions. By verifying the OTM fluid-structure interaction solution using examples of open flow, we find excellent agreement between simulation results and analytical solutions. Furthermore, we examine the range and scope of the FSI solution in the application of cell-transit test, from which relations between inlet velocities of the flow, Young's modulus, and deformation of the cell have been revealed. Through validation tests, we find a great potential for monolithic Lagrangian meshfree method in use of FSI problems involving complex fluid, highly flexible structures, and arbitrary boundary conditions.

Book Fluid Structure Interaction

Download or read book Fluid Structure Interaction written by Hans-Joachim Bungartz and published by Springer Science & Business Media. This book was released on 2007-06-24 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the series Lecture Notes in Computational Science and Engineering presents a collection of papers presented at the International Workshop on FSI, held in October 2005 in Hohenwart and organized by DFG's Research Unit 493 "FSI: Modeling, Simulation, and Optimization". The papers address partitioned and monolithic coupling approaches, methodical issues and applications, and discuss FSI from the mathematical, informatics, and engineering points of view.

Book Computational Fluid Structure Interaction

Download or read book Computational Fluid Structure Interaction written by Yuri Bazilevs and published by John Wiley & Sons. This book was released on 2013-01-25 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.

Book Fluid Structure Interaction II

Download or read book Fluid Structure Interaction II written by Hans-Joachim Bungartz and published by Springer Science & Business Media. This book was released on 2010-09-28 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid-structure interactions (FSI), i.e., the interplay of some moveable or deformable structure with an internal or surrounding fluid, are among the most widespread and most challenging coupled or multi-physics problems. Although much has been accomplished in developing good computational FSI methods and despite convincing solutions to a number of classes of problems including those presented in this book, there is a need for more comprehensive studies showing that the computational methods proposed are reliable, robust, and efficient beyond the classes of problems they have successfully been applied to.This volume of LNCSE, a sequel to vol. 53, which contained, among others, the first numerical benchmark for FSI problems and has received considerable attention since then, presents a collection of papers from the "First International Workshop on Computational Engineering - special focus FSI," held in Herrsching in October 2009 and organized by three DFG-funded consortia. The papers address all relevant aspects of FSI simulation and discuss FSI from the mathematical, informatical, and engineering perspective.

Book A Stabilized and Coupled Meshfree  Meshbased Method for Fluid structure Interaction Problems

Download or read book A Stabilized and Coupled Meshfree Meshbased Method for Fluid structure Interaction Problems written by Thomas-Peter Fries and published by . This book was released on 2005 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Smoothed Particle Hydrodynamics

Download or read book Smoothed Particle Hydrodynamics written by Gui-Rong Liu and published by World Scientific. This book was released on 2003 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first-ever book on smoothed particle hydrodynamics (SPH) and its variations, covering the theoretical background, numerical techniques, code implementation issues, and many novel and interesting applications. It contains many appealing and practical examples, including free surface flows, high explosive detonation and explosion, underwater explosion and water mitigation of explosive shocks, high velocity impact and penetration, and multiple scale simulations coupled with the molecular dynamics method. An SPH source code is provided and coupling of SPH and molecular dynamics is discussed for multiscale simulation, making this a friendly book for readers and SPH users.

Book Fluid Solid Interaction Dynamics

Download or read book Fluid Solid Interaction Dynamics written by Jing Tang Xing and published by Academic Press. This book was released on 2019-08-30 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid-Solid Interaction Dynamics: Theory, Variational Principles, Numerical Methods and Applications gives a comprehensive accounting of fluid-solid interaction dynamics, including theory, numerical methods and their solutions for various FSI problems in engineering. The title provides the fundamental theories, methodologies and results developed in the application of FSI dynamics. Four numerical approaches that can be used with almost all integrated FSI systems in engineering are presented. Methods are linked with examples to illustrate results. In addition, numerical results are compared with available experiments or numerical data in order to demonstrate the accuracy of the approaches and their value to engineering applications. The title gives readers the state-of-the-art in theory, variational principles, numerical modeling and applications for fluid-solid interaction dynamics. Readers will be able to independently formulate models to solve their engineering FSI problems using information from this book. - Presents the state-of-the-art in fluid-solid interaction dynamics, providing theory, method and results - Takes an integrated approach to formulate, model and simulate FSI problems in engineering - Illustrates results with concrete examples - Gives four numerical approaches and related theories that are suitable for almost all integrated FSI systems - Provides the necessary information for bench scientists to independently formulate, model, and solve physical FSI problems in engineering

Book Meshfree Methods for Partial Differential Equations IV

Download or read book Meshfree Methods for Partial Differential Equations IV written by Michael Griebel and published by Springer Science & Business Media. This book was released on 2008-10-10 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical treatment of partial differential equations with particle methods and meshfree discretization techniques is a very active research field both in the mathematics and engineering community. Due to their independence of a mesh, particle schemes and meshfree methods can deal with large geometric changes of the domain more easily than classical discretization techniques. Furthermore, meshfree methods offer a promising approach for the coupling of particle models to continuous models. This volume of LNCSE is a collection of the proceedings papers of the Fourth International Workshop on Meshfree Methods held in September 2007 in Bonn. The articles address the different meshfree methods (SPH, PUM, GFEM, EFGM, RKPM, etc.) and their application in applied mathematics, physics and engineering. The volume is intended to foster this very active and exciting area of interdisciplinary research and to present recent advances and results in this field.

Book OpenFOAM

Download or read book OpenFOAM written by J. Miguel Nóbrega and published by Springer. This book was released on 2019-01-24 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains selected papers of the 11th OpenFOAM® Workshop that was held in Guimarães, Portugal, June 26 - 30, 2016. The 11th OpenFOAM® Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents. The OpenFOAM® Workshop provided a forum for researchers, industrial users, software developers, consultants and academics working with OpenFOAM® technology. The central part of the Workshop was the two-day conference, where presentations and posters on industrial applications and academic research were shown. OpenFOAM® (Open Source Field Operation and Manipulation) is a free, open source computational toolbox that has a larger user base across most areas of engineering and science, from both commercial and academic organizations. As a technology, OpenFOAM® provides an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics, among several others. Additionally, the OpenFOAM technology offers complete freedom to customize and extend its functionalities.

Book Monolithic Methods and Versatile Applications for Numerical Fluid  Structure Interaction Studies

Download or read book Monolithic Methods and Versatile Applications for Numerical Fluid Structure Interaction Studies written by Ruizhi Yang and published by . This book was released on 2020 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: A monolithic method for numerically solving fluid--structure interactions between viscous flow on an unbounded domain and rigid body system is presented. The vorticity form of incompressible Navier--Stokes equations is solved on a uniform Cartesian grid with immersed boundary projection method. The Lattice Green's function based integrating factor technique developed by Liska and Colonius is used to analytically evaluate the viscous diffusion term. Half-explicit Runge--Kutta method is applied for both fluid and rigid body system in time marching. The overall fluid--body saddle point system is designed to be arranged in a way to reveal an added-mass term for viscous flow in the solving procedure of block LU decomposition. The added-mass term is inherently embedded into the coupled system, compared to its explicit use in previous fluid--structure interaction studies. Because the added-mass augments inertia of the body system, the algorithm is proved to be stable for arbitrary small density ratios including zero mass case. Interaction force and boundary conditions on the interface are kept implicitly and solved as internal variables , and no iteration process or parameter tuning is needed. Both passive and active motions of rigid body system are allowed, with joint constraint and active motions enforced through Lagrange multipliers. With a unified treatment, the interaction force on the immersed surface is also enforced through Lagrange multipliers. Multiple applications are demonstrated, including cylinder rising/falling under gravity with different mass ratios, actively oscillating airfoil in a free stream, free swimming of an articulated fish, and self-excited oscillation of an articulated flag. Comparisons are made with previous studies and good agreement is found. Another application of a two-component linked plates model is studies for physical behaviour of bifurcation, hysteresis and energy harvesting. The algorithm is versatile in the sense of implementation. All aforementioned applications can be set up with very little change in the code, benefit from the use of rigid body dynamics in spatial vector form and numerical techniques in this work.

Book Numerical Methods for PDEs

Download or read book Numerical Methods for PDEs written by Daniele Antonio Di Pietro and published by Springer. This book was released on 2018-10-12 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.

Book Recent Numerical Advances in Fluid Mechanics

Download or read book Recent Numerical Advances in Fluid Mechanics written by Omer San and published by MDPI. This book was released on 2020-07-03 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.

Book A Lagrangian Meshfree Simulation Framework for Additive Manufacturing of Metals

Download or read book A Lagrangian Meshfree Simulation Framework for Additive Manufacturing of Metals written by Zongyue Fan and published by . This book was released on 2021 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present a powder-scale computational framework to predict the microstructure evolution of metals in Powder Bed Fusion Additive Manufacturing (PBF AM) processes based on the Hot Optimal Transportation Meshfree (HOTM) method. The powder bed is modeled through Discrete Element Method (DEM) as discrete and deformable three-dimensional bodies by integrating statistic information from experiments, including particle size and shape, and powder packing density. Tractions in Lagrangian framework are developed to model the recoil pressure and surface tension. The laser beam is applied to surfaces of particles and substrate dynamically as a heat flux with user-specified beam size, power, scanning speed and path. The linear momentum and energy conservation equations are formulated in the Lagrangian configuration and solved simultaneously in a monolithic way by the HOTM method to predict the deformation, temperature, contact mechanisms and fluid-structure interactions in the powder bed. The numerical results are validated against benchmark tests and single track experiments. Various powder bed configurations, particle size distributions, laser powers and speeds are investigated to understand the influence of dynamic contact and inelastic material behavior on the deformation, heat transfer and phase transition of the powder bed. The formation of defects in the microstructure of 3D printed metals, including pores, partially and un-melted particles, are predicted by the proposed computational scheme.

Book Finite Element Method

Download or read book Finite Element Method written by G.R. Liu and published by Elsevier. This book was released on 2003-02-21 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite Element Method (FEM) has become an indispensable technology for the modelling and simulation of engineering systems. Written for engineers and students alike, the aim of the book is to provide the necessary theories and techniques of the FEM for readers to be able to use a commercial FEM package to solve primarily linear problems in mechanical and civil engineering with the main focus on structural mechanics and heat transfer.Fundamental theories are introduced in a straightforward way, and state-of-the-art techniques for designing and analyzing engineering systems, including microstructural systems are explained in detail. Case studies are used to demonstrate these theories, methods, techniques and practical applications, and numerous diagrams and tables are used throughout.The case studies and examples use the commercial software package ABAQUS, but the techniques explained are equally applicable for readers using other applications including NASTRAN, ANSYS, MARC, etc. - A practical and accessible guide to this complex, yet important subject - Covers modeling techniques that predict how components will operate and tolerate loads, stresses and strains in reality

Book Unified Lagrangian Formulation for Fluid and Solid Mechanics  Fluid structure Interaction and Coupled Thermal Problems Using the PFEM

Download or read book Unified Lagrangian Formulation for Fluid and Solid Mechanics Fluid structure Interaction and Coupled Thermal Problems Using the PFEM written by Alessandro Franci and published by . This book was released on 2015 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this thesis is the derivation and implementation of a unified Finite Element formulation for the solution of uid and solid mechanics, Fluid-Structure Interaction (FSI) and coupled thermal problems. The unified procedure is based on a stabilized velocity-pressure Lagrangian formulation. Each time step increment is solved using a two-step Gauss-Seidel scheme: first the linear momentum equations are solved for the velocity increments, next the continuity equation is solved for the pressure in the updated configuration. The Particle Finite Element Method (PFEM) is used for the fluid domains, while the Finite Element Method (FEM) is employed for the solid ones. As a consequence, the domain is remeshed only in the parts occupied by the fluid. Linear shape functions are used for both the velocity and the pressure fields. In order to deal with the incompressibility of the materials, the formulation has been stabilized using an updated version of the Finite Calculus (FIC) method. The procedure has been derived for quasi-incompressible Newtonian fluids. In this work, the FIC stabilization procedure has been extended also to the analysis of quasi-incompressible hypoelastic solids. Specific attention has been given to the study of free surface flow problems. In particular, the mass preservation feature of the PFEM-FIC stabilized procedure has been deeply studied with the help of several numerical examples. Furthermore, the conditioning of the problem has been analyzed in detail describing the effect of the bulk modulus on the numerical scheme. A strategy based on the use of a pseudo bulk modulus for improving the conditioning of the linear system is also presented. The unified formulation has been validated by comparing its numerical results to experimental tests and other numerical solutions for fluid and solid mechanics, and FSI problems. The convergence of the scheme has been also analyzed for most of the problems presented. The unified formulation has been coupled with the heat tranfer problem using a staggered scheme. A simple algorithm for simulating phase change problems is also described. The numerical solution of several FSI problems involving the temperature is given. The thermal coupled scheme has been used successfully for the solution of an industrial problem. The objective of study was to analyze the damage of a nuclear power plant pressure vessel induced by a high viscous fluid at high temperature, the corium. The numerical study of this industrial problem has been included in the thesis.

Book Multi dimensional Arbitrary Lagrangian Eulerian Method for Dynamic Fluid structure Interaction   LMFBR

Download or read book Multi dimensional Arbitrary Lagrangian Eulerian Method for Dynamic Fluid structure Interaction LMFBR written by and published by . This book was released on 1982 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper describes an arbitrary Lagrangian-Eulerian method for analyzing fluid-structure interactions in fast-reactor containment with complex internal structures. The fluid transient can be calculated either implicitly or explicitly, using a finite-difference mesh with vertices that may be moved with the fluid (Lagrangian), held fixed (Eulerian), or moved in any other prescribed manner (hybrid Lagrangian Eulerian). The structural response is computed explicitly by two nonlinear, elastic-plastic finite-element modules formulated in corotational coordinates. Interaction between fluid and structure is accounted for by enforcing the interface boundary conditions. The method has convincing advantages in treating complicated phenomena such as flow through perforated structures, large material distortions, flow around corners and irregularities, and highly contorted fluid boundaries. Several sample problems are given to illustrate the effectiveness of this arbitrary Lagrangian-Eulerian method.