EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Front tracking Solidification Model and Its Application in Modelling Alloy Solidification

Download or read book A Front tracking Solidification Model and Its Application in Modelling Alloy Solidification written by Guanyu Yi and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A front-tracking solidification model has been developed to simulate the dendritic structure evolution during alloy solidification. In the model the growth of dendrites is governed by heat and mass transport and a finite difference technique is employed to solve heat and solute diffusion during solidification. The model incorporates front-tracking technique to calculate and track the exact position of the Solid/Liquid (S/L) interface as a part of solution process and a new capture rule was designed and implemented in the model to efficiently track the growing S/L interface. The model has been evaluated and verified using simulated data from Al-Cu 4 wt. % alloy solidification. The effect of curvature undercooling on crystal growth was investigated. The simulated results reveal that solute redistribution, curvature of the S/L interface and anisotropy of interface tension are important factors in determining the dendritic morphology. The calculation of the S/L interface curvature and anisotropy of surface tension was found to be particularly important in determining the dendritic growth direction. Based on the above observations and simulated data, the parameters in the developed model have been optimised for predicting the solidification structure in binary alloys. Simulations of Al-Cu alloy solidification were then performed using the optimised model for single-grain and multi-grain solidification. The simulated results of single-grain growth were compared with the results from the Lipton-Glicksman-Kurz (LGK) model (Lipton et al. 1984). Solute profile ahead of the S/L interface was examined using different techniques for approximating solute profile in the growing cell. The solidification segregation in the multi-grain growth was investigated; and the dendritic evolution and solute interaction during multi-grain growth were investigated.

Book Quantitative Phase Field Modelling of Solidification

Download or read book Quantitative Phase Field Modelling of Solidification written by Nikolas Provatas and published by CRC Press. This book was released on 2021-10-12 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a study of phase field modelling of solidification in metal alloy systems. It is divided in two main themes. The first half discusses several classes of quantitative multi-order parameter phase field models for multi-component alloy solidification. These are derived in grand potential ensemble, thus tracking solidification in alloys through the evolution of the chemical potentials of solute species rather than the more commonly used solute concentrations. The use of matched asymptotic analysis for making phase field models quantitative is also discussed at length, and derived in detail in order to make this somewhat abstract topic accessible to students. The second half of the book studies the application of phase field modelling to rapid solidification where solute trapping and interface undercooling follow highly non-equilibrium conditions. In this limit, matched asymptotic analysis is used to map phase field evolution equations onto the continuous growth model, which is generally accepted as a sharp-interface description of solidification at rapid solidification rates. This book will be of interest to graduate students and researchers in materials science and materials engineering. Key Features Presents a clear path to develop quantitative multi-phase and multi-component phase field models for solidification and other phase transformation kinetics Derives and discusses the quantitative nature of the model formulations through matched interface asymptotic analysis Explores a framework for quantitative treatment of rapid solidification to control solute trapping and solute drag dynamics

Book Solidification Processing of Metallic Alloys Under External Fields

Download or read book Solidification Processing of Metallic Alloys Under External Fields written by Dmitry G. Eskin and published by Springer. This book was released on 2018-10-09 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the application of external physical fields to the solidification processing of metallic alloys. Leading academics from around the world present comprehensive and critical reviews on state-of-the-art research and discuss possible future directions. Major physical fields, including electromagnetic, electric, acoustic, and thermal, are considered. In addition, the most advanced synchrotron X-ray based real-time and in-situ studies and numerical modeling methodologies are reviewed and discussed, with a special emphasis on their applications to the solidification processes. Throughout, all chapters are illustrated with both historical and very recent research cases, including typical examples of in-situ studies, modeling, and simulation. This book contains essential knowledge and information suitable for a wide audience, from undergraduate and postgraduate students to academics, practicing researchers, and engineers in materials, metallurgy, and manufacturing.

Book Multiscale Modeling of Solidification of Multi component Alloys

Download or read book Multiscale Modeling of Solidification of Multi component Alloys written by Lijian Tan and published by . This book was released on 2007 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling solidification in the micro-scale is computationally intensive. To overcome this difficulty, a method combining features of front-tracking methods and fixed-domain methods is developed. To explicitly track the interface growth and shape of the solidifying crystals, a front-tracking approach based on the level set method is implemented. To easily model the heat and momentum transport, a fixed-domain method is implemented assuming a diffused freezing front where the liquid fraction is defined in terms of the level set function. The fixed-domain approach, by avoiding the explicit application of essential boundary conditions on the freezing front, leads to an energy conserving methodology that is not sensitive to the mesh size. Techniques including fast marching, narrow band computing and adaptive meshing are utilized to speed up computations. The model is used to investigate various phenomena in solidification including two- and three-dimensional dendrite growth of pure material and alloys, eutectic and peritectic solidification, convection effects on crystal and dendrite growth, planar/cellular/dendritic transition, interaction between multiple dendrites, columnar/equiaxed transition and etc. Interaction between thousands or even millions of crystals gives the overall behavior of the solidification process and defines the properties of the final product. A multiscale model based on a database approach is developed to investigate alloy solidification. Appropriate assumptions are introduced to describe the behavior of macroscopic temperature, macroscopic concentration, liquid volume fraction and microstructure features. These assumptions lead to a macroscale model with two unknown functions: liquid vol- ume fraction and microstructure features. These functions are computed using information from microscale solutions of selected problems. A computationally efficient model, which is different from the microscale and macroscale models, is utilized to find relevant sample problems. The microscale solution of the relevant sample problems is then utilized to evaluate the two unknown functions (liquid volume fraction and microstructure features) in the macroscale model. The temperature solution of the macroscale model is further used to improve the estimation of the liquid volume fraction and microstructure features. Interpolation is utilized in the feature space to greatly reduce the number of required sample problems. The efficiency of the proposed multiscale framework is demonstrated with numerical examples that consider a large number of crystals. A computationally intensive fully-resolved microscale analysis is also performed to evaluate the accuracy of the multiscale framework. (Abstract).

Book Modeling and Simulation of Microstructure Evolution in Solidifying Alloys

Download or read book Modeling and Simulation of Microstructure Evolution in Solidifying Alloys written by Laurentiu Nastac and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of Modeling and Simulation of Microstructure Evolution in Solidifying Alloys is to describe in a clear mathematical language the physics of the solidification structure evolution of cast alloys. The concepts and methodologies presented here for the net-shaped casting and the ingot remelt processes can be applied, with some modifications, to model other solidification processes such as welding and deposition processes. Another aim of the book is to provide simulation examples of the solidification structure modeling in some crucial commercial casting technologies as well as to provide practical techniques for controlling the structure formation during the solidification processes.

Book Science and Engineering of Casting Solidification  Second Edition

Download or read book Science and Engineering of Casting Solidification Second Edition written by Doru Michael Stefanescu and published by Springer Science & Business Media. This book was released on 2008-12-03 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stefanescu here attempts to describe solidification theory through the complex mathematical apparatus required for a fundamental treatment of the problem. The mathematics is however restricted to the elements essential to attain a working knowledge in the field. This is in line with the main goal of the book, which is to educate the reader in the fast moving area of computational modeling of solidification of castings. A special effort has been made to introduce the reader to the latest developments in solidification theory including, in this second edition, a new chapter on semi-solid casting.

Book Numerical Modelling and Simulation of Metal Processing

Download or read book Numerical Modelling and Simulation of Metal Processing written by Christof Sommitsch and published by MDPI. This book was released on 2021-08-16 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with metal processing and its numerical modelling and simulation. In total, 21 papers from different distinguished authors have been compiled in this area. Various processes are addressed, including solidification, TIG welding, additive manufacturing, hot and cold rolling, deep drawing, pipe deformation, and galvanizing. Material models are developed at different length scales from atomistic simulation to finite element analysis in order to describe the evolution and behavior of materials during thermal and thermomechanical treatment. Materials under consideration are carbon, Q&T, DP, and stainless steels; ductile iron; and aluminum, nickel-based, and titanium alloys. The developed models and simulations shall help to predict structure evolution, damage, and service behavior of advanced materials.

Book Science and Engineering of Casting Solidification

Download or read book Science and Engineering of Casting Solidification written by Doru Michael Stefanescu and published by Springer. This book was released on 2015-08-27 with total page 559 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 3rd edition of this popular textbook covers current topics in all areas of casting solidification. Partial differential equations and numerical analysis are used extensively throughout the text, with numerous calculation examples, to help the reader in achieving a working knowledge of computational solidification modeling. The features of this new edition include: • new chapters on semi-solid and metal matrix composites solidification • a significantly extended treatment of multiscale modeling of solidification and its applications to commercial alloys • a survey of new topics such as solidification of multicomponent alloys and molecular dynamic modeling • new theories, including a theory on oxide bi-films in the treatment of shrinkage problems • an in-depth treatment of the theoretical aspects of the solidification of the most important commercial alloys including steel, cast iron, aluminum-silicon eutectics, and superalloys • updated tables of material constants.

Book Fundamentals of Solidification 5th edition with Solutions Manual

Download or read book Fundamentals of Solidification 5th edition with Solutions Manual written by Wilfried Kurz and published by Trans Tech Publications Ltd. This book was released on 2023-08-23 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 4th 1998 edition, there have been numerous crucial advances to the modelling and the basic understanding of solidification phenomena, and with its linking to experimental results. These topics have been incorporated into this 5th Fully Revised Edition, as well as a new final chapter on microstructure selection which explains how to combine the concepts of the preceding chapters for modelling real microstructures, in complex processes such as additive manufacturing. This new 5th edition is of high interest to undergraduate and graduate levels and professionals. With its numerous new topics - also borne out by the new authorship - students and teachers, scientists and engineers will greatly benefit from this new book. The topics are presented in the same praised manner as in previous editions, readable at three levels: - an initial feel for the subject is obtained by consulting the figures and their detailed captions; - a deeper understanding of the underlying physics is found by working through the main text; - 15 appendices offer a detailed analysis of the various theories, by providing detailed derivations of the relevant equations. Particularly Novel: the final chapter 8 on microstructure-selection explains how to combine the concepts of the preceding chapters to model the real microstructures formed during complex processes such as additive manufacturing, and the new detailed phase-field appendix which opens the door to the accurate computer-modelling of growth-forms. This edition goes with a companion Solutions Manual offering model solutions to 133 problems (exercises).

Book CFD Modeling and Simulation in Materials Processing 2016

Download or read book CFD Modeling and Simulation in Materials Processing 2016 written by Laurentiu Nastac and published by Springer. This book was released on 2017-08-31 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Solidification and Gravity VI

Download or read book Solidification and Gravity VI written by A. Roósz and published by Trans Tech Publications Ltd. This book was released on 2014-05-09 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: The results of many foreign and Hungarian researchers presented at the 6th International Conference on Solidification and Gravity, in Miskolc-Lillafüred, on September 2-5, 2013 have been collected in this volume. This conference series is aimed to attract all those having interest in the investigation and simulation of different types of solidification processes and both micro- and macro-gravity effects. Within the framework of the conference a MICAST meeting (Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions) was organized on September 5-6, 2013. The 2013 conference was a memorial one for Professor Hans Eckart Exner and Professor Erik György Fuchs who had died in the period between the previous (2008) and the last (2013) conference.

Book Continuum Scale Simulation of Engineering Materials

Download or read book Continuum Scale Simulation of Engineering Materials written by Dierk Raabe and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 885 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.

Book Advances in the Science and Engineering of Casting Solidification

Download or read book Advances in the Science and Engineering of Casting Solidification written by Laurentiu Nastac and published by Springer. This book was released on 2016-12-16 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection encompasses the following four areas: (1) Solidification processing: theoretical and experimental investigations of solidification processes including castings solidification, directional solidification of alloys, electromagnetic stirring, ultrasonic cavitation, mechanical vibration, active cooling and heating, powder bed-electron beam melting additive manufacturing, etc. for processing of metals, polymers and composite materials; (2) Microstructure Evolution: theoretical and experimental studies related to microstructure evolution of materials including prediction of solidification-related defects and particle pushing/engulfment aspects; (3) Novel Casting and Molding Processes: modeling and experimental aspects including high pressure die casting, permanent casting, centrifugal casting, low pressure casting, 3D silica sand mold printing, etc.; and (4) Cast Iron: all aspects related to cast iron characterization, computational and analytical modeling, and processing.

Book Manufacturing Techniques for Materials

Download or read book Manufacturing Techniques for Materials written by T.S. Srivatsan and published by CRC Press. This book was released on 2018-04-09 with total page 790 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manufacturing Techniques for Materials: Engineering and Engineered provides a cohesive and comprehensive overview of the following: (i) prevailing and emerging trends, (ii) emerging developments and related technology, and (iii) potential for the commercialization of techniques specific to manufacturing of materials. The first half of the book provides the interested reader with detailed chapters specific to the manufacturing of emerging materials, such as additive manufacturing, with a valued emphasis on the science, technology, and potentially viable practices specific to the manufacturing technique used. This section also attempts to discuss in a lucid and easily understandable manner the specific advantages and limitations of each technique and goes on to highlight all of the potentially viable and emerging technological applications. The second half of this archival volume focuses on a wide spectrum of conventional techniques currently available and being used in the manufacturing of both materials and resultant products. Manufacturing Techniques for Materials is an invaluable tool for a cross-section of readers including engineers, researchers, technologists, students at both the graduate level and undergraduate level, and even entrepreneurs.

Book Computational Thermo Fluid Dynamics

Download or read book Computational Thermo Fluid Dynamics written by Petr A. Nikrityuk and published by John Wiley & Sons. This book was released on 2011-09-19 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining previously unconnected computational methods, this monograph discusses the latest basic schemes and algorithms for the solution of fluid, heat and mass transfer problems coupled with electrodynamics. It presents the necessary mathematical background of computational thermo-fluid dynamics, the numerical implementation and the application to real-world problems. Particular emphasis is placed throughout on the use of electromagnetic fields to control the heat, mass and fluid flows in melts and on phase change phenomena during the solidification of pure materials and binary alloys. However, the book provides much more than formalisms and algorithms; it also stresses the importance of good, feasible and workable models to understand complex systems, and develops these in detail. Bringing computational fluid dynamics, thermodynamics and electrodynamics together, this is a useful source for materials scientists, PhD students, solid state physicists, process engineers and mechanical engineers, as well as lecturers in mechanical engineering.

Book Fundamentals of Solidification 5th Edition

Download or read book Fundamentals of Solidification 5th Edition written by Wilfried Kurz and published by Trans Tech Publications Ltd. This book was released on 2023-02-20 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the 4th 1998 edition, there have been numerous crucial advances to the modelling and the basic understanding of solidification phenomena, and with its linking to experimental results. These topics have been incorporated into this 5th Fully Revised Edition, as well as a new final chapter on microstructure selection which explains how to combine the concepts of the preceding chapters for modelling real microstructures, in complex processes such as additive manufacturing. With its numerous new topics - also borne out by the new authorship - students and teachers, scientists and engineers will greatly benefit from this new book. The topics are presented in the same praised manner as in previous editions, readable at three levels: - an initial feel for the subject is obtained by consulting the figures and their detailed captions; - a deeper understanding of the underlying physics is found by working through the main text; - 15 appendices offer a detailed analysis of the various theories, by providing detailed derivations of the relevant equations. Particularly Novel: the final chapter 8 on microstructure-selection explains how to combine the concepts of the preceding chapters to model the real microstructures formed during complex processes such as additive manufacturing, and the new detailed phase-field appendix which opens the door to the accurate computer-modelling of growth-forms. This new 5th edition is of high interest to undergraduate and graduate levels and professionals. For orders you are welcome to download the Order Form.