EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book A Comparison of Hydraulic Fracture Modeling with Downhole and Surface Microseismic Data in a Stacked Fluvial Pay System

Download or read book A Comparison of Hydraulic Fracture Modeling with Downhole and Surface Microseismic Data in a Stacked Fluvial Pay System written by Nur Azlinda Mohammad and published by . This book was released on 2009 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Understanding Downhole Microseismic Data Analysis

Download or read book Understanding Downhole Microseismic Data Analysis written by Jubran Akram and published by Springer Nature. This book was released on 2020-01-01 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as an excellent resource text for students and professionals, providing an in-depth overview of the theory and applications of downhole microseismic monitoring of hydraulic fracturing. The readers will benefit greatly from the detailed explanation on the processes and workflows involved in the acquisition design modeling, processing and interpretation of microseismic data.

Book Microseismic Imaging of Hydraulic Fracturing

Download or read book Microseismic Imaging of Hydraulic Fracturing written by Shawn Mawell and published by SEG Books. This book was released on 2014-01-01 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microseismic Imaging of Hydraulic Fracturing: Improved Engineering of Unconventional Shale Reservoirs (SEG Distinguished Instructor Series No. 17) covers the use of microseismic data to enhance engineering design of hydraulic fracturing and well completion. The book, which accompanies the 2014 SEG Distinguished Instructor Short Course, describes the design, acquisition, processing, and interpretation of an effective microseismic project. The text includes a tutorial of the basics of hydraulic fracturing, including the geologic and geomechanical factors that control fracture growth. In addition to practical issues associated with collecting and interpreting microseismic data, potential pitfalls and quality-control steps are discussed. Actual case studies are used to demonstrate engineering benefits and improved production through the use of microseismic monitoring. Providing a practical user guide for survey design, quality control, interpretation, and application of microseismic hydraulic fracture monitoring, this book will be of interest to geoscientists and engineers involved in development of unconventional reservoirs.

Book Issues in Fossil Fuel Energy Technologies  2013 Edition

Download or read book Issues in Fossil Fuel Energy Technologies 2013 Edition written by and published by ScholarlyEditions. This book was released on 2013-05-01 with total page 719 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Fossil Fuel Energy Technologies / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Oil and Gas Research. The editors have built Issues in Fossil Fuel Energy Technologies: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Oil and Gas Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Fossil Fuel Energy Technologies: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Book Hydraulic Fracture Modeling

Download or read book Hydraulic Fracture Modeling written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2017-11-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today's petroleum engineer with an all-inclusive product to characterize and optimize today's more complex reservoirs. - Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods - Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics - Provides today's petroleum engineer with model validation tools backed by real-world case studies

Book Modeling Hydraulic Fractures Using Microseismic Events

Download or read book Modeling Hydraulic Fractures Using Microseismic Events written by Mohammed Zaki AlQassab and published by . This book was released on 2020 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advancements in hydraulic fracturing technology have enabled the development of unconventional reservoirs. Hydraulic fractures increase the total surface area of the wellbore, which leads to an increase in production rate. One way to evaluate the success of hydraulic fracturing jobs is to detect microseismic events during fracturing. Mapping microseismic events help engineers identify the areal extent of the fractures. However, estimating the actual size, shape, and orientation of hydraulic fractures from microseismic events is challenging because microseismic events are week signals and include noise (Warpinski 2009). Here we propose a novel workflow that builds a discrete fracture model directly from microseismic events. We use several techniques such as density-based spatial clustering of applications with noise (DBSCAN), surface fitting, embedded discrete fracture model (EDFM), and proxy-based assisted history matching (AHM). We first define the region for each stage using the perforation intervals. Then, we use DBSCAN to reduce noise and identify clusters in each stage. Next, we choose the main cluster in each stage to fit a fracture plane to the microseismic events. The last step is to calibrate the fracture model using two scaling factors: one reduces the fracture height and the other reduces the fracture half-length. We determine the appropriate scaling factors using AHM. Therefore, the final calibrated fracture model would match field production data. We found that preliminary fracture model overestimates the size of the fractures. Hence, calibrating the fracture model with production data is important. There are several field applications that can benefit from our workflow. For example, we can compare the fracture models for several offset wells in a reservoir and make some correlations with their fracturing strategies. The best fracturing strategy can then be implemented for future wells. We also introduce a new approach that estimates bottom hole pressure from static wellhead pressure in wellbores filled with gas and water. We divide the gas column into (n) small segments. Then, we evaluate the pressure in each segment along with the depth of the gas-water interface by numerically solving (n+1) equations. This approach is useful in history matching since obtaining bottom hole pressure is challenging and expensive

Book Numerical Simulation in Hydraulic Fracturing  Multiphysics Theory and Applications

Download or read book Numerical Simulation in Hydraulic Fracturing Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Book Hydraulic Fracture Monitoring

Download or read book Hydraulic Fracture Monitoring written by Ana Karen Ortega Perez and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Well-monitoring before, during, and after hydraulic fracturing treatment is essential to accomplish a successful fracture completion program. By knowing the geometry, orientation, and propagation of the hydraulic fractures, we can identify potential completion issues during fracturing operations and help in the design of more efficient unconventional reservoir completions. Distributed Acoustic Sensing (DAS) is an emerging technology in hydraulic fracture monitoring that enables continuous, real-time measurements along the entire length of a fiber optic cable. The low-frequency band of DAS records strain perturbations of the medium, due to fracture propagation, which provides critical constraints on hydraulic fracture geometry. In this study, the low-frequency DAS strain fronts was analyzed, with their corresponding pumping curves, for one hydraulic fracturing treatment to obtain information on the hydraulic fractures like fracture azimuth, propagation speed, number of fractures created during each stage and re-stimulation of pre-existent fractures. Then, the microseismicity of the treatment was analyzed to obtain information on hydraulic fractures like length, height, trajectory and cloud growth over time. The microseismicity was also projected onto the strain fronts to study the development of the events with respect to the fracture signal and to find correlations between the strain changes and the microseismic events. Finally, the PKN model was computed using parameters from the stimulation treatment and the DAS strain fronts to forecast anticipated fracture lengths against observations. The PKN modeling results were compared to the microseismic and DAS results to find stages where the hydraulic fractures did not grow or propagate as expected. The low-frequency DAS is able to obtain information on hydraulic fractures that would need extra processing or might not be picked up using other records as microseismicity. However, the spatial constraint of the measurements in DAS needs to be taken into consideration. This spatial constraint can be addressed by the integration of other records. In general, there is good agreement between the LF DAS data, the pumping information, the microseismic data and the PKN model. But when they do not agree on a stage, that gives us an indication that something unexpected happened during injection. Models describing the expected behavior of the different records analyzed in this research were created to explain some possible scenarios of fracture propagation. Most stages in this treatment fall within one of these models.

Book Mechanics of Hydraulic Fracturing

Download or read book Mechanics of Hydraulic Fracturing written by Xi Zhang and published by John Wiley & Sons. This book was released on 2022-12-15 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanics of Hydraulic Fracturing Comprehensive single-volume reference work providing an overview of experimental results and predictive methods for hydraulic fracture growth in rocks Mechanics of Hydraulic Fracturing: Experiment, Model, and Monitoring provides a summary of the research in mechanics of hydraulic fractures during the past two decades, plus new research trends to look for in the future. The book covers the contributions from theory, modeling, and experimentation, including the application of models to reservoir stimulation, mining preconditioning, and the formation of geological structures. The four expert editors emphasize the variety of diverse methods and tools in hydraulic fracturing and help the reader understand hydraulic fracture mechanics in complex geological situations. To aid in reader comprehension, practical examples of new approaches and methods are presented throughout the book. Key topics covered in the book include: Prediction of fracture shapes, sizes, and distributions in sedimentary basins, plus their importance in petroleum industry Real-time monitoring methods, such as micro-seismicity and trace tracking How to uncover geometries of fractures like dikes and veins Fracture growth of individual foundations and its applications Researchers and professionals working in the field of fluid-driven fracture growth will find immense value in this comprehensive reference on hydraulic fracturing mechanics.

Book Hydraulic Fracture Model Comparison Study

Download or read book Hydraulic Fracture Model Comparison Study written by and published by . This book was released on 1993 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study is a comparison of hydraulic fracture models run using test data from the GRI Staged-Field Experiment #3 (SFE-3). Models compared include: (1) PKN and GDK constant-height versions; (2) 3-layer pseudo-3-D models; and (3) 5-layer 3-D or pseudo-3-D models. Model calculations were provided by several consulting companies, oil producing companies, service companies, and academia. Modelers were given the measured stress and material property data obtained at SFE-3 stimulations. Companies were allowed to run any or all of the three cases (constant height, 3 layer, or 5 layer) using their own models or commercial models they had purchased. Included with the results are brief discussions of each model. This paper documents the differences in length, height, width, pressure, and efficiency predicted by the various models for each of the three cases.

Book Hydraulic fracture geometry characterization based on distributed fiber optic strain measurements

Download or read book Hydraulic fracture geometry characterization based on distributed fiber optic strain measurements written by Kan Wu and published by Elsevier. This book was released on 2024-08-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed fiber optic strain measurements, revolutionizing subsurface monitoring and hydraulic fracture characterization, offers a pivotal resource for geophysicists, reservoir engineers, and completion engineers. This cutting-edge technology leads the way in innovation with its ability to detect rock deformation and changes in strain along optical fibers, providing exceptional spatial resolution and measurement sensitivity. Its applications are broad and impactful, ranging from monitoring subsurface carbon storage and enhancing geothermal systems to advancing unconventional reservoir development. Despite the technology's advancements, accurately interpreting data of strain measurement from the hydraulic fracturing process poses a significant challenge due to the complex conditions in the Earth's surface. This book presents a comprehensive approach for analyzing strain responses from both horizontal and vertical monitoring wells to quantify hydraulic fracture propagation and the evolution of fracture geometry. The development of a forward geomechanics model significantly enhance the understanding of the field data. The introduction of a groundbreaking inversion model allows for in-depth data analysis and maximizes the dataset's value. Moreover, this book applies its findings through two field studies in typical unconventional reservoirs, illustrating the practical application of the technology. These case studies highlight effective field data interpretation and the critical insights that can be obtained. This book aims to elucidate data interpretation and analysis of complex subsurface measurements related to hydraulic fracture propagation, providing engineers with a novel perspective on subsurface exploration.

Book Hydraulic Fracturing in Unconventional Reservoirs

Download or read book Hydraulic Fracturing in Unconventional Reservoirs written by Hoss Belyadi and published by Gulf Professional Publishing. This book was released on 2019-06-18 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracturing in Unconventional Reservoirs: Theories, Operations, and Economic Analysis, Second Edition, presents the latest operations and applications in all facets of fracturing. Enhanced to include today's newest technologies, such as machine learning and the monitoring of field performance using pressure and rate transient analysis, this reference gives engineers the full spectrum of information needed to run unconventional field developments. Covering key aspects, including fracture clean-up, expanded material on refracturing, and a discussion on economic analysis in unconventional reservoirs, this book keeps today's petroleum engineers updated on the critical aspects of unconventional activity. - Helps readers understand drilling and production technology and operations in shale gas through real-field examples - Covers various topics on fractured wells and the exploitation of unconventional hydrocarbons in one complete reference - Presents the latest operations and applications in all facets of fracturing

Book Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs

Download or read book Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs written by Ali Moinfar and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Naturally fractured reservoirs (NFRs) hold a significant amount of the world's hydrocarbon reserves. Compared to conventional reservoirs, NFRs exhibit a higher degree of heterogeneity and complexity created by fractures. The importance of fractures in production of oil and gas is not limited to naturally fractured reservoirs. The economic exploitation of unconventional reservoirs, which is increasingly a major source of short- and long-term energy in the United States, hinges in part on effective stimulation of low-permeability rock through multi-stage hydraulic fracturing of horizontal wells. Accurate modeling and simulation of fractured media is still challenging owing to permeability anisotropies and contrasts. Non-physical abstractions inherent in conventional dual porosity and dual permeability models make these methods inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent approaches for discrete fracture modeling may require large computational times and hence the oil industry has not widely used such approaches, even though they give more accurate representations of fractured reservoirs than dual continuum models. We developed an embedded discrete fracture model (EDFM) for an in-house fully-implicit compositional reservoir simulator. EDFM borrows the dual-medium concept from conventional dual continuum models and also incorporates the effect of each fracture explicitly. In contrast to dual continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity and heterogeneity of a typical fractured reservoir. EDFM employs a structured grid to remediate challenges associated with unstructured gridding required for other discrete fracture models. Also, the EDFM approach can be easily incorporated in existing finite difference reservoir simulators. The accuracy of the EDFM approach was confirmed by comparing the results with analytical solutions and fine-grid, explicit-fracture simulations. Comparison of our results using the EDFM approach with fine-grid simulations showed that accurate results can be achieved using moderate grid refinements. This was further verified in a mesh sensitivity study that the EDFM approach with moderate grid refinement can obtain a converged solution. Hence, EDFM offers a computationally-efficient approach for simulating fluid flow in NFRs. Furthermore, several case studies presented in this study demonstrate the applicability, robustness, and efficiency of the EDFM approach for modeling fluid flow in fractured porous media. Another advantage of EDFM is its extensibility for various applications by incorporating different physics in the model. In order to examine the effect of pressure-dependent fracture properties on production, we incorporated the dynamic behavior of fractures into EDFM by employing empirical fracture deformation models. Our simulations showed that fracture deformation, caused by effective stress changes, substantially affects pressure depletion and hydrocarbon recovery. Based on the examples presented in this study, implementation of fracture geomechanical effects in EDFM did not degrade the computational performance of EDFM. Many unconventional reservoirs comprise well-developed natural fracture networks with multiple orientations and complex hydraulic fracture patterns suggested by microseismic data. We developed a coupled dual continuum and discrete fracture model to efficiently simulate production from these reservoirs. Large-scale hydraulic fractures were modeled explicitly using the EDFM approach and numerous small-scale natural fractures were modeled using a dual continuum approach. The transport parameters for dual continuum modeling of numerous natural fractures were derived by upscaling the EDFM equations. Comparison of the results using the coupled model with that of using the EDFM approach to represent all natural and hydraulic fractures explicitly showed that reasonably accurate results can be obtained at much lower computational cost by using the coupled approach with moderate grid refinements.

Book Rock Fractures and Fluid Flow

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1996-09-27
  • ISBN : 0309103711
  • Pages : 568 pages

Download or read book Rock Fractures and Fluid Flow written by National Research Council and published by National Academies Press. This book was released on 1996-09-27 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Book Imaging the Mechanics of Hydraulic Fracturing in Naturally fractured Reservoirs Using Induced Seismicity and Numerical Modeling

Download or read book Imaging the Mechanics of Hydraulic Fracturing in Naturally fractured Reservoirs Using Induced Seismicity and Numerical Modeling written by Xueping Zhao and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hydraulic Fracture Modeling in Naturally Fractured Reservoirs

Download or read book Hydraulic Fracture Modeling in Naturally Fractured Reservoirs written by Kaustubh Shrivastava and published by . This book was released on 2019 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing of horizontal wells is one of the key technological breakthroughs that has led to the shale revolution. Hydraulic fracturing models are used to engineer hydraulic fracture design and optimize production. Typically, hydraulic fracturing models treat hydraulic fractures as planar, bi-wing fractures. However, recent core-through investigations have suggested that during hydraulic fracturing in naturally fractured reservoirs, complex hydraulic fracture geometries can be created due to the interaction of the growing hydraulic fracture with natural fractures. This limits the application of planar fracture models for optimizing hydraulic fracturing design in naturally fractured reservoirs. In this research, we present a novel three-dimensional displacement discontinuity method based hydraulic fracturing simulator that allows us to model hydraulic fracture growth in the presence of natural fractures along with proppant transport in an efficient manner. The model developed in this dissertation is used to investigate the interaction of a hydraulic fracture with natural fractures and study the transport of proppant in the resulting complex fracture networks. This investigation gives us novel insight into the influence of fracture geometry and stress interference on the final distribution of proppant in fracture networks. Based on this investigation, suggestions are made to improve proppant transport in complex fracture networks. In order to correctly capture the effect of natural fractures on fracture growth, knowledge about the distribution of natural fractures in the reservoir is imperative. Typically, little is known about the in-situ natural fracture distribution, as direct observation of the reservoir is not possible. A novel technique of synthetic coring is developed to create a discrete fracture network (DFN) from core data, and it is used to create a DFN based on the Hydraulic Fracturing Test Site #1 data. Hydraulic fracture propagation is modeled in the created DFN, and the results are compared with field observations. As the reservoir may contain thousands of natural fractures, simulations in a realistic DFN can be computationally very expensive. In order to reduce the computational requirements of the simulator, we present a novel predictor step based on the local linearization method that provides a better initial guess for solving the fluid-solid interaction problem. This is shown to reduce computational time significantly. A novel technique, Extended Adaptive Integral Method, to speed up the simulator is developed. The method uses an effective medium to represent the interaction between displacement discontinuity elements and reduces the order of complexity of solving the geomechanical system of equations from O(N2) to O(NlogN). The novel formulation of this method is presented, and sensitivity studies are conducted to show the improvement in computational efficiency

Book Hydraulic Fracture Optimization Using Hydraulic Fracture and Reservoir Modeling in the Piceance Basin  Colorado

Download or read book Hydraulic Fracture Optimization Using Hydraulic Fracture and Reservoir Modeling in the Piceance Basin Colorado written by Harris Allen Reynolds and published by . This book was released on 2012 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is an important stimulation method for producing unconventional gas reserves. Natural fractures are present in many low-permeability gas environments and often provide important production pathways for natural gas. The production benefit from natural fractures can be immense, but it is difficult to quantify. The Mesaverde Group in the Piceance Basin in Colorado is a gas producing reservoir that has low matrix permeability but is also highly naturally fractured. Wells in the Piceance Basin are hydraulically fractured, so the production enhancements due to natural fracturing and hydraulic fracturing are difficult to decouple. In this thesis, dipole sonic logs were used to quantify geomechanical properties by combining stress equations with critically-stressed faulting theory. The properties derived from this log-based evaluation were used to numerically model hydraulic fracture treatments that had previously been pumped in the basin. The results from these hydraulic fracture models, in addition to the log-derived reservoir properties were used to develop reservoir models. Several methods for simulating the reservoir were compared and evaluated, including layer cake models, geostatistical models, and models simulating the fracture treatment using water injection. The results from the reservoir models were compared to actual production data to quantify the effect of both hydraulic fractures and natural fractures on production. This modeling also provided a framework upon which completion techniques were economically evaluated.