EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Design and Implementation of a Phase Locked Loop for High speed Serial Links

Download or read book Design and Implementation of a Phase Locked Loop for High speed Serial Links written by Rushabh Ravindra Mehta and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Phase Locked Frequency Generation and Clocking

Download or read book Phase Locked Frequency Generation and Clocking written by Woogeun Rhee and published by Institution of Engineering and Technology. This book was released on 2020-06-09 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Phase-Locked Frequency Generation and Clocking covers essential topics and issues in current Phase-Locked Loop design, from a light touch of fundamentals to practical design aspects. Both wireless and wireline systems are considered in the design of low noise frequency generation and clocking systems. Topics covered include architecture and design, digital-intensive Phase-Locked Loops, low noise frequency generation and modulation, clock-and-data recovery, and advanced clocking and clock generation systems. The book not only discusses fundamental architectures, system design considerations, and key building blocks but also covers advanced design techniques and architectures in frequency generation and clocking systems. Readers can expect to gain insights into phase-locked clocking as well as system perspectives and circuit design aspects in modern Phase-Locked Loop design.

Book Monolithic Phase Locked Loops and Clock Recovery Circuits

Download or read book Monolithic Phase Locked Loops and Clock Recovery Circuits written by Behzad Razavi and published by John Wiley & Sons. This book was released on 1996-04-18 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring an extensive 40 page tutorial introduction, this carefully compiled anthology of 65 of the most important papers on phase-locked loops and clock recovery circuits brings you comprehensive coverage of the field-all in one self-contained volume. You'll gain an understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise.

Book VLSI Modulation Circuits   Signal Processing  Data Conversion  and Power Management

Download or read book VLSI Modulation Circuits Signal Processing Data Conversion and Power Management written by Hongjiang Song and published by Lulu.com. This book was released on 2014-05-24 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a texbook developed for a VLSI circuit design course series (EEE598) that the author has been offering in the Schools of Engineering at Arizona State University. The materials are organized into eighteen special topics covering the principles, the circuit design techniques and the applications of VLSI modulation in signal processing, data conversion, power amplification and power management.

Book Digital Phase locked Loops for Multi GHz Clock Generation

Download or read book Digital Phase locked Loops for Multi GHz Clock Generation written by Volodymyr Kratyuk and published by . This book was released on 2007 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic design procedure for a second-order digital phase-locked loop with a linear phase detector is proposed. The design procedure is based on the analogy between a type-II second-order analog PLL and a digital PLL. A new digital PLL architecture featuring a linear phase detector which eliminates the noise-bandwidth tradeoff is presented. It employs a stochastic time-to-digital converter (STDC) and a high frequency delta-sigma dithering to achieve a wide PLL bandwidth and a low jitter. The measured results obtained from the prototype chip demonstrate a significant jitter improvement with the STDC.

Book Design of All Digital Phase locked Loop in Serial Link Communication

Download or read book Design of All Digital Phase locked Loop in Serial Link Communication written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Wide Band Adaptive All Digital Phase Locked Loop With Self Jitter Measurement and Calibration

Download or read book A Wide Band Adaptive All Digital Phase Locked Loop With Self Jitter Measurement and Calibration written by Bo Jiang and published by . This book was released on 2016 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expanding growth of mobile products and services has led to various wireless communication standards that employ different spectrum bands and protocols to provide data, voice or video communication services. Software defined radio and cognitive radio are emerging techniques that can dynamically integrate various standards to provide seamless global coverage, including global roaming across geographical regions, and interfacing with different wireless networks. In software defined radio and cognitive radio, one of the most critical RF blocks that need to exhibit frequency agility is the phase lock loop (PLL) frequency synthesizer. In order to access various standards, the frequency synthesizer needs to have wide frequency tuning range, fast tuning speed, and low phase noise and frequency spur. The traditional analog charge pump frequency synthesizer circuit design is becoming difficult due to the continuous down-scalings of transistor feature size and power supply voltage. The goal of this project was to develop an all digital phase locked loop (ADPLL) as the alternative solution technique in RF transceivers by taking advantage of digital circuitry’s characteristic features of good scalability, robustness against process variation and high noise margin. The targeted frequency bands for our ADPLL design included 880MHz-960MHz, 1.92GHz-2.17GHz, 2.3GHz-2.7GHz, 3.3GHz-3.8GHz and 5.15GHz-5.85GHz that are used by wireless communication standards such as GSM, UMTS, bluetooth, WiMAX and Wi-Fi etc. This project started with the system level model development for characterizing ADPLL phase noise, fractional spur and locking speed. Then an on-chip jitter detector and parameter adapter was designed for ADPLL to perform self-tuning and self-calibration to accomplish high frequency purity and fast frequency locking in each frequency band. A novel wide band DCO is presented for multi-band wireless application. The proposed wide band adaptive ADPLL was implemented in the IBM 0.13μm CMOS technology. The phase noise performance, the frequency locking speed as well as the tuning range of the digitally controlled oscillator was assessed and agrees well with the theoretical analysis.

Book Low Noise Clocking for High Speed Serial Links

Download or read book Low Noise Clocking for High Speed Serial Links written by Merrick Brownlee and published by . This book was released on 2006 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the functionality of digital chips continues to increase dramatically, chip- to-chip communication bandwidths must scale accordingly to avoid constraining the overall system performance. Therefore, high speed transceiver design has be- come an important research topic. In particular, the performance of the circuits that are responsible for timing accuracy are important as bit periods continue to shrink. Furthermore, in order for these circuits to have a true impact on the performance of the system, they must use unique architectures to achieve timing accuracy rather than simply trading power consumption for performance. This thesis discusses issues related to the timing circuits on both the transmit and receive side of the link. On the transmit side, a phase-locked loop (PLL) is used to generate the clock that tells the driver when to start and stop driving the current bit onto the channel. On the receive side, a clock and data recovery (CDR) circuit is responsible for properly centering the sampling clock in the middle of the bit period. Design techniques to achieve good timing performance in both the PLL and CDR are proposed. Specifically, the PLL incorporates a supply regulated tuning scheme to combat the high levels of supply noise present in large digital chips and a resistor-based charge pump to reduce the charge pump flicker noise contribution. The CDR uses oversampling to decouple the tradeoff between two important performance metrics: jitter generation and jitter tolerance. To validate the proposed ideas, both a PLL test chip and a CDR test chip are presented. The PLL operates from 0.5GHz to 2.5GHz and achieves 2.36ps rms jitter using a ring voltage-controlled oscillator. The power consumption scales favorably with frequency, using much less power at lower frequencies where less power is needed. The CDR operates up to 3.6Gbps with a BER of less than 10[superscript -12]. The measured jitter tolerance corner frequency was improved by a factor of 30 from 1MHz to 30MHz without increasing the recovered clock jitter.

Book All Digital Frequency Synthesizer in Deep Submicron CMOS

Download or read book All Digital Frequency Synthesizer in Deep Submicron CMOS written by Robert Bogdan Staszewski and published by John Wiley & Sons. This book was released on 2006-09-22 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new and innovative paradigm for RF frequency synthesis and wireless transmitter design Learn the techniques for designing and implementing an all-digital RF frequency synthesizer. In contrast to traditional RF techniques, this innovative book sets forth digitally intensive design techniques that lead the way to the development of low-cost, low-power, and highly integrated circuits for RF functions in deep submicron CMOS processes. Furthermore, the authors demonstrate how the architecture enables readers to integrate an RF front-end with the digital back-end onto a single silicon die using standard ASIC design flow. Taking a bottom-up approach that progressively builds skills and knowledge, the book begins with an introduction to basic concepts of frequency synthesis and then guides the reader through an all-digital RF frequency synthesizer design: Chapter 2 presents a digitally controlled oscillator (DCO), which is the foundation of a novel architecture, and introduces a time-domain model used for analysis and VHDL simulation Chapter 3 adds a hierarchical layer of arithmetic abstraction to the DCO that makes it easier to operate algorithmically Chapter 4 builds a phase correction mechanism around the DCO such that the system's frequency drift or wander performance matches that of the stable external frequency reference Chapter 5 presents an application of the all-digital RF synthesizer Chapter 6 describes the behavioral modeling and simulation methodology used in design The final chapter presents the implementation of a full transmitter and experimental results. The novel ideas presented here have been implemented and proven in two high-volume, commercial single-chip radios developed at Texas Instruments: Bluetooth and GSM. While the focus of the book is on RF frequency synthesizer design, the techniques can be applied to the design of other digitally assisted analog circuits as well. This book is a must-read for students and engineers who want to learn a new paradigm for RF frequency synthesis and wireless transmitter design using digitally intensive design techniques.

Book Performance Enhancement Techniques for Low Power Digital Phase Locked Loops

Download or read book Performance Enhancement Techniques for Low Power Digital Phase Locked Loops written by Amr Elshazly and published by . This book was released on 2012 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Desire for low-power, high performance computing has been at core of the symbiotic union between digital circuits and CMOS scaling. While digital circuit performance improves with device scaling, analog circuits have not gained these benefits. As a result, it has become necessary to leverage increased digital circuit performance to mitigate analog circuit deficiencies in nanometer scale CMOS in order to realize world class analog solutions. In this thesis, both circuit and system enhancement techniques to improve performance of clock generators are discussed. The following techniques were developed: (1) A digital PLL that employs an adaptive and highly efficient way to cancel the effect of supply noise, (2) a supply regulated DPLL that uses low power regulator and improves supply noise rejection, (3) a digital multiplying DLL that obviates the need for high-resolution TDC while achieving sub-picosecond jitter and excellent supply noise immunity, and (4) a high resolution TDC based on a switched ring oscillator, are presented. Measured results obtained from the prototype chips are presented to illustrate the proposed design techniques.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1998 with total page 920 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Time to Digital Converters

Download or read book Time to Digital Converters written by Stephan Henzler and published by Springer Science & Business Media. This book was released on 2010-03-10 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro-electronics and so integrated circuit design are heavily driven by technology scaling. The main engine of scaling is an increased system performance at reduced manufacturing cost (per system). In most systems digital circuits dominate with respect to die area and functional complexity. Digital building blocks take full - vantage of reduced device geometries in terms of area, power per functionality, and switching speed. On the other hand, analog circuits rely not on the fast transition speed between a few discrete states but fairly on the actual shape of the trans- tor characteristic. Technology scaling continuously degrades these characteristics with respect to analog performance parameters like output resistance or intrinsic gain. Below the 100 nm technology node the design of analog and mixed-signal circuits becomes perceptibly more dif cult. This is particularly true for low supply voltages near to 1V or below. The result is not only an increased design effort but also a growing power consumption. The area shrinks considerably less than p- dicted by the digital scaling factor. Obviously, both effects are contradictory to the original goal of scaling. However, digital circuits become faster, smaller, and less power hungry. The fast switching transitions reduce the susceptibility to noise, e. g. icker noise in the transistors. There are also a few drawbacks like the generation of power supply noise or the lack of power supply rejection.