EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book 3D Characterization of a Great Basin Geothermal System

Download or read book 3D Characterization of a Great Basin Geothermal System written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Great Basin exhibits both anomalously high heat flow (~75±5 mWm-2) and active faulting and extension resulting in robust geothermal activity. There are ~430 known geothermal systems in the Great Basin, with evidence suggesting that undiscovered blind geothermal systems may actually represent the majority of geothermal activity. These systems employ discrete fault intersection/interaction areas as conduits for geothermal circulation. Recent studies show that steeply dipping normal faults with step-overs, fault intersections, accommodation zones, horse-tailing fault terminations and transtensional pull-aparts are the most prominent structural controls of Great Basin geothermal systems. These fault geometries produce sub-vertical zones of high fault and fracture density that act as fluid flow conduits. Structurally controlled fluid flow conduits are further enhanced when critically stressed with respect to the ambient stress conditions. The Astor Pass blind geothermal system, northwestern Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Along this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range. As such, the Astor Pass area lies in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and more northerly striking normal faults. The Astor Pass tufa tower implies the presence of a blind geothermal system. Previous studies suggest that deposition of the Astor Pass tufa was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal fault. Subsequent drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming the presence of a blind geothermal system at Astor Pass. Expanding upon previous work and employing additional detailed geologic mapping, interpretation of 2D seismic reflection data and analysis of well cuttings, a 3-dimensional geologic model of the Astor Pass blind geothermal system was constructed. The 3D structural framework indicates that the Pleistocene tufa is associated with three discrete fault zones whose intersections plunge moderately to steeply NW-NNW. These critically stressed fault intersections act as conduits for upwelling geothermal fluids.

Book Three Dimensional Geologic Characterization of a Great Basin Geothermal System

Download or read book Three Dimensional Geologic Characterization of a Great Basin Geothermal System written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Great Basin, western USA, exhibits anomalously high heat flow (~75±5 mWm-2) and active faulting and extension, resulting in ~430 known geothermal systems. Recent studies have shown that steeply dipping normal faults in transtensional pull-aparts are a common structural control of these Great Basin geothermal systems. The Astor Pass blind (no surface expression) geothermal system, Nevada, lies along the boundary between the Basin and Range to the east and the Walker Lane to the west. Across this boundary, strain is transferred from dextral shear in the Walker Lane to west-northwest directed extension in the Basin and Range, resulting in a transtensional setting consisting of both northwest-striking, left-stepping dextral faults and northerly striking normal faults. Previous studies indicate that Astor Pass was controlled by the intersection of a northwest-striking dextral normal fault and north-northwest striking normal-dextral fault bounding the western side of the Terraced Hills. Drilling (to ~1200 m) has revealed fluid temperatures of ~94°C, confirming a blind geothermal system. Expanding upon previous work and employing interpretation of 2D seismic reflection data, additional detailed geologic mapping, and well cuttings analysis, a 3-dimensional geologic model of the Astor Pass geothermal system was constructed. The 3D model indicates a complex interaction/intersection area of three discrete fault zones: a northwest-striking dextral-normal fault, a north-northwest-striking normal-dextral fault, and a north-striking west-dipping normal fault. These two discrete, critically-stressed intersection areas plunge moderately to steeply to the NW-NNW and probably act as conduits for upwelling geothermal fluids.

Book Three Dimensional Geologic Characterization of Geothermal Systems

Download or read book Three Dimensional Geologic Characterization of Geothermal Systems written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to geothermal circulation is crucial in order to both mitigate the costs of geothermal exploration (especially drilling) and to identify blind geothermal systems (no surface expression). Astor Pass, Nevada, one such blind geothermal system, lies near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present at Astor Pass. Previous studies identified a blind geothermal system controlled by the intersection of northwest-striking dextral and north-northwest-striking normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting significantly higher maximum temperatures. Additional data, including reprocessed 2D seismic data and petrologic analysis of well cuttings, were integrated with existing and reinterpreted geologic maps and cross-sections to aid construction of a 3D geologic model. This comprehensive 3D integration of multiple data sets allows characterization of the structural setting of the Astor Pass blind geothermal system at a level of detail beyond what independent data interpretation can provide. Our analysis indicates that the blind geothermal system is controlled by two north- to northwest-plunging fault intersections.

Book Advancements in 3D Structural Analysis of Geothermal Systems

Download or read book Advancements in 3D Structural Analysis of Geothermal Systems written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady's geothermal system and a 'greenfield' geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady's, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1:24,000 scale detailed geologic map and cross-sections, 2D seismic reflection profiles and other geophysical data, and downhole temperature data. The 3D geologic model based on these data consists of 61 fault planes, 25 distinct stratigraphic units, and 2 intrusive bodies. Geothermal fluids are produced from a left step-over/relay ramp within the Brady's Fault Zone (BFZ). Under local stress conditions, fault segments that strike NNE-to-NE are most likely to slip and/or dilate, and therefore transmit geothermal fluids. The 3D model defines the locations of discrete fault intersections within the BFZ and indicates that the densest zones of structurally controlled fracture permeability are ~10-to-10s of meters in diameter and plunge ~55° NW-NNW beneath the heart of the BFZ step over. The locations of high intersection density, high fault slip and dilation tendency, high subsurface temperature, and lithologies known to support high fracture permeability are combined to produce 3D 'fairway' maps useful in both assessments of geothermal resource potential and for defining drilling targets. Astor Pass is located on the Pyramid Lake Paiute Reservation, ~80 km north of Reno, NV. It is a prospective 'greenfield' geothermal area, and thus subsurface data are relatively sparse. Available data include: two relatively deep wells (~1400 m) and one shallower well (~500 m) with lithologies interpreted from drill cuttings, several 2D seismic reflection profiles, a 1:24,000 scale geologic map and cross-section, a shallow temperature survey, and downhole temperature data. 3D modeling based on these data has defined 19 distinct fault planes and 16 stratigraphic units. Based on the stress field calculated from borehole breakouts, drilling induced tensile cracks and petal-centerline cracks in the two relatively deep wells, 3D slip and dilation tendency analysis indicates that northerly striking fault segments are most likely to slip and/or dilate, and therefore transmit geothermal fluids. Analysis of fault ...

Book Three Dimensional Geothermal Fairway Mapping

Download or read book Three Dimensional Geothermal Fairway Mapping written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Elevated permeability along fault systems provides pathways for circulation of geothermal fluids. Accurate location of such fluid flow pathways in the subsurface is crucial to future geothermal development in order to both accurately assess resource potential and mitigate drilling costs by increasing drilling success rates. Employing a variety of surface and subsurface data sets, we present detailed 3D geologic analyses of two Great Basin geothermal systems, the actively producing Brady's geothermal system and a 'greenfield' geothermal prospect at Astor Pass, Nevada. 3D modeling provides the framework for quantitative structural analyses. We combine 3D slip and dilation tendency analysis along fault zones and calculations of fault intersection density in the two geothermal systems with the locations of lithologies capable of supporting dense, interconnected fracture networks. The collocation of these permeability promoting characteristics with elevated heat represent geothermal 'fairways', areas with ideal conditions for geothermal fluid flow. Location of geothermal fairways at high resolution in 3D space can help to mitigate the costs of geothermal exploration by providing discrete drilling targets and data-based evaluations of reservoir potential.

Book 3 Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems

Download or read book 3 Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

Book 3D Magnetotelluric Characterization of the COSO GeothermalField

Download or read book 3D Magnetotelluric Characterization of the COSO GeothermalField written by Philip E. Wannamaker and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge of the subsurface electrical resistivity/conductivity can contribute to a better understanding of complex hydrothermal systems, typified by Coso geothermal field, through mapping the geometry (bounds and controlling structures) over existing production. Three-dimensional magnetotelluric (MT) inversion is now an emerging technology for characterizing the resistivity structures of complex geothermal systems. The method appears to hold great promise, but histories exploiting truly 3D inversion that demonstrate the advantages that can be gained by acquiring and analyzing MT data in three dimensions are still few in number. This project will address said issue, by applying 3D MT forward modeling and inversion to a MT data set acquired over the Coso geothermal field. The goal of the project is to provide the capability to image large geothermal reservoirs in a single self-consistent model. Initial analysis of the Coso MT data has been carried out using 2D MT imaging technology to construct an initial 3D resistivity model from a series of 2D resistivity images obtained using the inline electric field measurements (Zxy impedance elements) along different measurement transects. This model will be subsequently refined through a 3D inversion process. The initial 3D resistivity model clearly shows the controlling geological structures possibly influencing well production at Coso. The field data however, also show clear three dimensionality below 1 Hz, demonstrating the limitations of 2D resistivity imaging. The 3D MT predicted data arising from this starting model show good correspondence in dominant components of the impedance tensor (Zxy and Zyx) above 1Hz. Below 1 Hz there is significant differences between the field data and the 2D model data.

Book Integrated Fault Seal Analysis

Download or read book Integrated Fault Seal Analysis written by S. Ogilvie and published by Geological Society of London. This book was released on 2020-08-03 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Faults commonly trap fluids such as hydrocarbons and water and therefore are of economic significance. During hydrocarbon field development, smaller faults can provide baffles and/or conduits to flow. There are relatively simple, well established workflows to carry out a fault seal analysis for siliciclastic rocks based primarily on clay content. There are, however, outstanding challenges related to other rock types, to calibrating fault seal models (with static and dynamic data) and to handling uncertainty. The variety of studies presented here demonstrate the types of data required and workflows followed in today’s environment in order to understand the uncertainties, risks and upsides associated with fault-related fluid flow. These studies span all parts of the hydrocarbon value chain from exploration to production but are also of relevance for other industries such as radioactive waste and CO2 containment.

Book Lectures on the Characterization and the Exploitation of Geothermal Reservoirs in France

Download or read book Lectures on the Characterization and the Exploitation of Geothermal Reservoirs in France written by UNU Geothermal Training Programme (Iceland). and published by . This book was released on 1990 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Hydrologic Characterization of the Regional Geothermal Flow System in South central Idaho and Northern Nevada

Download or read book Hydrologic Characterization of the Regional Geothermal Flow System in South central Idaho and Northern Nevada written by Craig D. Sauer and published by . This book was released on 1999 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Models and Modeling

Download or read book Models and Modeling written by Jerry P. Fairley and published by John Wiley & Sons. This book was released on 2016-09-15 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Models and Modeling in the Earth and Environmental Sciences offers students and professionals the opportunity to learn about groundwater modeling, starting from the basics. Using clear, physically-intuitive examples, the author systematically takes us on a tour that begins with the simplest representations of fluid flow and builds through the most important equations of groundwater hydrology. Along the way, we learn how to develop a conceptual understanding of a system, how to choose boundary and initial conditions, and how to exploit model symmetry. Other important topics covered include non-dimensionalization, sensitivity, and finite differences. Written in an eclectic and readable style that will win over even math-phobic students, this text lays the foundation for a successful career in modeling and is accessible to anyone that has completed two semesters of Calculus. Although the popular image of a geologist or environmental scientist may be the rugged adventurer, heading off into the wilderness with a compass and a hand level, the disciplines of geology, hydrogeology, and environmental sciences have become increasingly quantitative. Today’s earth science professionals routinely work with mathematical and computer models, and career success often demands a broad range of analytical and computational skills. An Introduction to Models and Modeling in the Earth and Environmental Sciencesis written for students and professionals who want to learn the craft of modeling, and do more than just run “black box” computer simulations.

Book Geothermal Reservoir Engineering

Download or read book Geothermal Reservoir Engineering written by E. Okandan and published by Springer. This book was released on 2011-10-02 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the oil crisis of 1973, we suddenly became aware that fossil fuel resources are limited and will be exhausted soon if new alternatives are not put into use immediately. Conservation measures and extensive research on new sources of energy has eased the demand on fossil fuels, especially crude oil. Geothermal energy as an alternative; source had its share in this devel opment and electricity producing capacity increased from 700 to 4700 MWe during 1970 to 1985. Geothermal reservoir engineering emerged as an impor tant field in the assessment of geothermal sources. During the 25 years of its development, several areas were identified that needed further at tention for the correct description and interpretation of reservoir be havior. This fact as accepted by all operators is vital for the steady and continuous operation of power plants. During this NATO ASI, a detailed review of theory and field case his tories on geothermal reservoir engineering was presented. In understanding .the reservoir, conceptual models, natural state models, well bore measure ments, transient and tracer testing provide data which are indispensable. They are powerful tools in understanding reservoir behavior provided we know how to interpret them. During lectures the theory and practical applications of these interpretive methods were discussed.

Book Computational Geo Electromagnetics

Download or read book Computational Geo Electromagnetics written by Viacheslav V. Spichak and published by . This book was released on 2020-02 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Geo-Electromagnetics: Methods, Models, and Forecasts, Volume Five in the Computational Geophysics series, is devoted to techniques for building of geoelectrical models from electromagnetic data, featuring Bayesian statistical analysis and neural network algorithms. These models are applied to studying the geoelectrical structure of famous volcanoes (i.e., Vesuvio, Kilauea, Elbrus, Komagatake, Hengill) and geothermal zones (i.e., Travale, Italy; Soultz-sous-Forets, Elsace). Methodological recommendations are given on electromagnetic sounding of faults as well as geothermal and hydrocarbon reservoirs. Techniques for forecasting of petrophysical properties from the electrical resistivity as proxy parameter are also considered. Computational Geo-Electromagnetics: Methods, Models, and Forecasts offers techniques and algorithms for building geoelectrical models under conditions of rare or irregularly distributed EM data and/or lack of prior geological and geophysical information. This volume also includes methodological guidelines on interpretation of electromagnetic sounding data depending on goals of the study. Finally, it details computational algorithms for using electrical resistivity for properties beyond boreholes. Provides algorithms for inversion of incomplete, rare or irregularly distributed EM data Features methodological issues of building geoelectrical models Offers techniques for retrieving petrophysical properties from EM sounding data and well logs

Book Geothermal Energy

    Book Details:
  • Author : William E. Glassley
  • Publisher : CRC Press
  • Release : 2014-10-13
  • ISBN : 1482221756
  • Pages : 410 pages

Download or read book Geothermal Energy written by William E. Glassley and published by CRC Press. This book was released on 2014-10-13 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: An In-Depth Introduction to Geothermal EnergyAddressing significant changes in the energy markets since the first edition, Geothermal Energy: Renewable Energy and the Environment, Second Edition expounds on the geothermal industry, exploring the expansion, growth, and development of geothermal systems. This text covers every area of geothermal ener

Book Volcanoes to Vineyards

    Book Details:
  • Author : Jim E. O'Connor
  • Publisher : Geological Society of America
  • Release : 2009
  • ISBN : 0813700159
  • Pages : 886 pages

Download or read book Volcanoes to Vineyards written by Jim E. O'Connor and published by Geological Society of America. This book was released on 2009 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume contains guides for 34 geological field trips offered in conjunction with the October 2009 GSA Annual Meeting in Portland, Oregon. Showcasing the region's geological diversity, the peer-reviewed papers included here span topics ranging from accreted terrains and mantle plumes to volcanoes, floods, and vineyard terroir. Locations visited throughout Oregon, Washington, and Idaho encompass Astoria to Zillah. More than just a series of maps, the accompanying descriptions, observations, and conclusions offer new insights to the geologic processes and history of the Pacific Northwest - insights that will inspire readers to put their boots on the evidence as they develop their own understanding of this remarkable and dynamic corner of the world."--Publisher's description.

Book Geobotanical Characterization of a Geothermal System Using Hyperspectral Imagery

Download or read book Geobotanical Characterization of a Geothermal System Using Hyperspectral Imagery written by and published by . This book was released on 1998 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We have analyzed hyperspectral Airborne Visible-Infrared Imaging System (AVIRIS) imagery taken in September of 1992 in Long Valley Caldera, CA, a geothermally active region expressed surficially by hot springs and fumaroles. Geological and vegetation mapping are attempted through spectral classification of imagery. Particular hot spring areas in the caldera are targeted for analysis. The data is analyzed for unique geobotanical patterns in the vicinity of hot springs as well as gross identification of dominant plant and mineral species. Spectra used for the classifications come from a vegetation spectral library created for plant species found to be associated with geothermal processes. This library takes into account the seasonality of vegetation by including spectra for species on a monthly basis. Geological spectra are taken from JPL and USGS mineral libraries. Preliminary classifications of hot spring areas indicate some success in mineral identification and less successful vegetation species identification. The small spatial extent of individual plants demands either sub-pixel analysis or increased spatial resolution of imagery. Future work will also include preliminary analysis of a hyperspectral thermal imagery dataset and a multitemporal air photo dataset. The combination of these remotely sensed datasets for Long Valley will yield a valuable product for geothermal exploration efforts in other regions.

Book Katazome ch

Download or read book Katazome ch written by and published by . This book was released on 197? with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: