Download or read book Signal Processing and Machine Learning for Biomedical Big Data written by Ervin Sejdic and published by CRC Press. This book was released on 2018-07-04 with total page 1235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzing, storing, and visualizing such massive data has required new shifts in signal processing paradigms and new ways of combining signal processing with machine learning tools. This book covers several of these aspects in two ways: firstly, through theoretical signal processing chapters where tools aimed at big data (be it biomedical or otherwise) are described; and, secondly, through application-driven chapters focusing on existing applications of signal processing and machine learning for big biomedical data. This text aimed at the curious researcher working in the field, as well as undergraduate and graduate students eager to learn how signal processing can help with big data analysis. It is the hope of Drs. Sejdic and Falk that this book will bring together signal processing and machine learning researchers to unlock existing bottlenecks within the healthcare field, thereby improving patient quality-of-life. Provides an overview of recent state-of-the-art signal processing and machine learning algorithms for biomedical big data, including applications in the neuroimaging, cardiac, retinal, genomic, sleep, patient outcome prediction, critical care, and rehabilitation domains. Provides contributed chapters from world leaders in the fields of big data and signal processing, covering topics such as data quality, data compression, statistical and graph signal processing techniques, and deep learning and their applications within the biomedical sphere. This book’s material covers how expert domain knowledge can be used to advance signal processing and machine learning for biomedical big data applications.
Download or read book 2014 International Conference on Artificial Intelligence and Software Engineering AISE2014 written by S. K. Chen, Altair Engineering Inc., California, USA and published by DEStech Publications, Inc. This book was released on 2014-02-06 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: 2014 International Conference on Artificial Intelligence and Software Engineering(AISE2014) aims to provide a forum for accessing to the most up-to-date and authoritative knowledge from both Artificial Intelligence and Software Engineering. AISE2014 features unique mixed topics of AI Algorithms, Data Mining, Knowledge-based Systems, Software Process and so on. The goal of this conference is to bring researchers, engineers, and students to the areas of Artificial Intelligence and Software Engineering to share experiences and original research contributions on those topics. Researchers and practitioners are invited to submit their contributions to AISE2014.
Download or read book Cooperative and Graph Signal Processing written by Petar Djuric and published by Academic Press. This book was released on 2018-07-04 with total page 868 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cooperative and Graph Signal Processing: Principles and Applications presents the fundamentals of signal processing over networks and the latest advances in graph signal processing. A range of key concepts are clearly explained, including learning, adaptation, optimization, control, inference and machine learning. Building on the principles of these areas, the book then shows how they are relevant to understanding distributed communication, networking and sensing and social networks. Finally, the book shows how the principles are applied to a range of applications, such as Big data, Media and video, Smart grids, Internet of Things, Wireless health and Neuroscience. With this book readers will learn the basics of adaptation and learning in networks, the essentials of detection, estimation and filtering, Bayesian inference in networks, optimization and control, machine learning, signal processing on graphs, signal processing for distributed communication, social networks from the perspective of flow of information, and how to apply signal processing methods in distributed settings. - Presents the first book on cooperative signal processing and graph signal processing - Provides a range of applications and application areas that are thoroughly covered - Includes an editor in chief and associate editor from the IEEE Transactions on Signal Processing and Information Processing over Networks who have recruited top contributors for the book
Download or read book Intelligent Computing Optimization written by Pandian Vasant and published by Springer Nature. This book was released on 2021-12-30 with total page 1020 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes the scientific results of the fourth edition of the International Conference on Intelligent Computing and Optimization which took place at December 30–31, 2021, via ZOOM. The conference objective was to celebrate “Compassion and Wisdom” with researchers, scholars, experts and investigators in Intelligent Computing and Optimization worldwide, to share knowledge, experience, innovation—marvelous opportunity for discourse and mutuality by novel research, invention and creativity. This proceedings encloses the original and innovative scientific fields of optimization and optimal control, renewable energy and sustainability, artificial intelligence and operational research, economics and management, smart cities and rural planning, meta-heuristics and big data analytics, cyber security and blockchains, IoTs and Industry 4.0, mathematical modelling and simulation, health care and medicine.
Download or read book Advances in Informatics and Computing in Civil and Construction Engineering written by Ivan Mutis and published by Springer. This book was released on 2018-10-08 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume chronicles the papers presented at the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management, held in Chicago, IL, USA, in October 2018. The theme of the conference focused on fostering, encouraging, and promoting research and development in the application of integrated information technology (IT) throughout the life-cycle of the design, construction, and occupancy of buildings and related facilities. The CIB – International Council for Research and Innovation in Building Construction – was established in 1953 as an association whose objectives were to stimulate and facilitate international cooperation and information exchange between governmental research institutes in the building and construction sector, with an emphasis on those institutes engaged in technical fields of research. The conference brought together more than 200 scholars from 40 countries, who presented the innovative concepts and methods featured in this collection of papers.
Download or read book Audio Source Separation written by Shoji Makino and published by Springer. This book was released on 2018-03-01 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the first comprehensive overview of the fascinating topic of audio source separation based on non-negative matrix factorization, deep neural networks, and sparse component analysis. The first section of the book covers single channel source separation based on non-negative matrix factorization (NMF). After an introduction to the technique, two further chapters describe separation of known sources using non-negative spectrogram factorization, and temporal NMF models. In section two, NMF methods are extended to multi-channel source separation. Section three introduces deep neural network (DNN) techniques, with chapters on multichannel and single channel separation, and a further chapter on DNN based mask estimation for monaural speech separation. In section four, sparse component analysis (SCA) is discussed, with chapters on source separation using audio directional statistics modelling, multi-microphone MMSE-based techniques and diffusion map methods. The book brings together leading researchers to provide tutorial-like and in-depth treatments on major audio source separation topics, with the objective of becoming the definitive source for a comprehensive, authoritative, and accessible treatment. This book is written for graduate students and researchers who are interested in audio source separation techniques based on NMF, DNN and SCA.
Download or read book Nonlinear Programming written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2016-09-01 with total page 1100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving continuous optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. It places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The 3rd edition brings the book in closer harmony with the companion works Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Convex Analysis and Optimization (Athena Scientific, 2003), and Network Optimization (Athena Scientific, 1998). These works are complementary in that they deal primarily with convex, possibly nondifferentiable, optimization problems and rely on convex analysis. By contrast the nonlinear programming book focuses primarily on analytical and computational methods for possibly nonconvex differentiable problems. It relies primarily on calculus and variational analysis, yet it still contains a detailed presentation of duality theory and its uses for both convex and nonconvex problems. This on-line edition contains detailed solutions to all the theoretical book exercises. Among its special features, the book: Provides extensive coverage of iterative optimization methods within a unifying framework Covers in depth duality theory from both a variational and a geometric point of view Provides a detailed treatment of interior point methods for linear programming Includes much new material on a number of topics, such as proximal algorithms, alternating direction methods of multipliers, and conic programming Focuses on large-scale optimization topics of much current interest, such as first order methods, incremental methods, and distributed asynchronous computation, and their applications in machine learning, signal processing, neural network training, and big data applications Includes a large number of examples and exercises Was developed through extensive classroom use in first-year graduate courses
Download or read book Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics written by Arnaldo Leal-Junior and published by Academic Press. This book was released on 2021-10-26 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics presents development concepts and applications of optical fiber sensors made of compliant materials in rehabilitation robotics. The book provides methods for the instrumentation of novel compliant devices. It presents the development, characterization and application of optical fiber sensors in robotics, ranging from conventional robots with rigid structures to novel wearable systems with soft structures, including smart textiles and intelligent structures for healthcare. Readers can look to this book for help in designing robotic structures for different applications, including problem-solving tactics in soft robotics. This book will be a great resource for mechanical, electrical and electronics engineers and photonics and optical sensing engineers. - Addresses optical fiber sensing solutions in wearable systems and soft robotics - Presents developments—from foundational, to novel and future applications—of optical fiber sensors in the next generation of robotic devices - Provides methods for the instrumentation of novel compliant devices
Download or read book Computer Vision ECCV 2018 written by Vittorio Ferrari and published by Springer. This book was released on 2018-10-05 with total page 880 pages. Available in PDF, EPUB and Kindle. Book excerpt: The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.
Download or read book Digital Signal Processing with Kernel Methods written by Jose Luis Rojo-Alvarez and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: A realistic and comprehensive review of joint approaches to machine learning and signal processing algorithms, with application to communications, multimedia, and biomedical engineering systems Digital Signal Processing with Kernel Methods reviews the milestones in the mixing of classical digital signal processing models and advanced kernel machines statistical learning tools. It explains the fundamental concepts from both fields of machine learning and signal processing so that readers can quickly get up to speed in order to begin developing the concepts and application software in their own research. Digital Signal Processing with Kernel Methods provides a comprehensive overview of kernel methods in signal processing, without restriction to any application field. It also offers example applications and detailed benchmarking experiments with real and synthetic datasets throughout. Readers can find further worked examples with Matlab source code on a website developed by the authors: http://github.com/DSPKM • Presents the necessary basic ideas from both digital signal processing and machine learning concepts • Reviews the state-of-the-art in SVM algorithms for classification and detection problems in the context of signal processing • Surveys advances in kernel signal processing beyond SVM algorithms to present other highly relevant kernel methods for digital signal processing An excellent book for signal processing researchers and practitioners, Digital Signal Processing with Kernel Methods will also appeal to those involved in machine learning and pattern recognition.
Download or read book Dynamic Neural Networks for Robot Systems Data Driven and Model Based Applications written by Long Jin and published by Frontiers Media SA. This book was released on 2024-07-24 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network control has been a research hotspot in academic fields due to the strong ability of computation. One of its wildly applied fields is robotics. In recent years, plenty of researchers have devised different types of dynamic neural network (DNN) to address complex control issues in robotics fields in reality. Redundant manipulators are no doubt indispensable devices in industrial production. There are various works on the redundancy resolution of redundant manipulators in performing a given task with the manipulator model information known. However, it becomes knotty for researchers to precisely control redundant manipulators with unknown model to complete a cyclic-motion generation CMG task, to some extent. It is worthwhile to investigate the data-driven scheme and the corresponding novel dynamic neural network (DNN), which exploits learning and control simultaneously. Therefore, it is of great significance to further research the special control features and solve challenging issues to improve control performance from several perspectives, such as accuracy, robustness, and solving speed.
Download or read book Advances in Computing and Data Sciences written by Mayank Singh and published by Springer Nature. This book was released on 2022-07-26 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The two-volume proceedings CCIS 1613 + 1614 constitute revised selected papers from the 6th International Conference on Advances in Computing and Data Sciences, ICACDS 2022, which was held in Kurnool, India in April 2022. The total of 69 full papers presented in the proceedings was carefully reviewed and selected from 411 submissions. The papers focus on advances of next generation computing technologies in the areas of advanced computing and data sciences.
Download or read book Latent Variable Analysis and Signal Separation written by Emmanuel Vincent and published by Springer. This book was released on 2015-08-14 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 12th International Conference on Latent Variable Analysis and Signal Separation, LVA/ICS 2015, held in Liberec, Czech Republic, in August 2015. The 61 revised full papers presented – 29 accepted as oral presentations and 32 accepted as poster presentations – were carefully reviewed and selected from numerous submissions. Five special topics are addressed: tensor-based methods for blind signal separation; deep neural networks for supervised speech separation/enhancement; joined analysis of multiple datasets, data fusion, and related topics; advances in nonlinear blind source separation; sparse and low rank modeling for acoustic signal processing.
Download or read book Multi faceted Deep Learning written by Jenny Benois-Pineau and published by Springer Nature. This book was released on 2021-10-20 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem–oriented chapters. The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks. Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.
Download or read book Hybrid Artificial Intelligent Systems written by Francisco Javier de Cos Juez and published by Springer. This book was released on 2018-06-09 with total page 765 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the refereed proceedings of the 13th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2018, held in Oviedo, Spain, in June 2018. The 62 full papers published in this volume were carefully reviewed and selected from 104 submissions. They are organized in the following topical sections: Neurocomputing, fuzzy systems, rough sets, evolutionary algorithms, Agents andMultiagent Systems, and alike.
Download or read book Geometric Science of Information written by Frank Nielsen and published by Springer. This book was released on 2015-10-24 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Conference on Geometric Science of Information, GSI 2015, held in Palaiseau, France, in October 2015. The 80 full papers presented were carefully reviewed and selected from 110 submissions and are organized into the following thematic sessions: Dimension reduction on Riemannian manifolds; optimal transport; optimal transport and applications in imagery/statistics; shape space and diffeomorphic mappings; random geometry/homology; Hessian information geometry; topological forms and Information; information geometry optimization; information geometry in image analysis; divergence geometry; optimization on manifold; Lie groups and geometric mechanics/thermodynamics; computational information geometry; Lie groups: novel statistical and computational frontiers; geometry of time series and linear dynamical systems; and Bayesian and information geometry for inverse problems.
Download or read book Proceedings of the Singapore Cyber Security Conference SG CRC 2016 written by A. Mathur and published by IOS Press. This book was released on 2016-01-26 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our increased reliance on computer technology for all aspects of life, from education to business, means that the field of cyber-security has become of paramount importance to us all. This book presents the proceedings of the inaugural Singapore Cyber-Security R&D Conference (SG-CRC 2016), held in Singapore in January 2016, and contains six full and seven short peer-reviewed papers. The conference took as its theme the importance of introducing a technically grounded plan for integrating cyber-security into a system early in the design process, rather than as an afterthought. The element of design is integral to a process, be it a purely software system, such as one engaged in managing online transactions, or a combination of hardware and software such as those used in Industrial Control Systems, pacemakers, and a multitude of IoT devices. SG-CRC 2016 focused on how design as an element can be made explicit early in the development process using novel techniques based on sound mathematical tools and engineering approaches, and brought together academics and practitioners from across the world to participate in a program of research papers and industrial best practice, as well as an exhibition of tools. The book will be of interest to all those with a working interest in improved cyber-security.