EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fabrication of Yttria Stabilized Zirconia Thin Films on Poroussubstrates for Fuel Cell Applications

Download or read book Fabrication of Yttria Stabilized Zirconia Thin Films on Poroussubstrates for Fuel Cell Applications written by Andres Leming and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A process for the deposition of yttria stabilized zirconia (YSZ) films, on porous substrates, has been developed. These films have possible applications as electrolyte membranes in fuel cells. The films were deposited from colloidal suspensions through the vacuum infiltration technique. Films were deposited on both fully sintered and partially sintered substrates. A critical cracking thickness for the films was identified and strategies are presented to overcome this barrier. Green film density was also examined, and a method for improving green density by changing suspension pH and surfactant was developed. A dependence of film density on film thickness was observed, and materials interactions are suggested as a possible cause. Non-shorted YSZ films were obtained on co-fired substrates, and a cathode supported solid oxide fuel cell was constructed and characterized.

Book Thin Film Structures in Energy Applications

Download or read book Thin Film Structures in Energy Applications written by Suresh Babu Krishna Moorthy and published by Springer. This book was released on 2015-03-10 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of thin film structures in energy applications. Each chapter contains both fundamentals principles for each thin film structure as well as the relevant energy application technologies. The authors cover thin films for a variety of energy sectors including inorganic and organic solar cells, DSSCs, solid oxide fuel cells, thermoelectrics, phosphors and cutting tools.

Book Nanoscale Surface Engineering for Ceramic Fuel Cells

Download or read book Nanoscale Surface Engineering for Ceramic Fuel Cells written by Young Beom Kim and published by Stanford University. This book was released on 2011 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ceramic fuel cell (CFC) is an all-solid-state energy conversion device and usually refers to fuel cells employing solid ceramic electrolytes. The present generation of ceramic fuel cells can be classified into two types according to the electrolytes they use: oxygen ion conducting fuel cells, or solid oxide fuel cells (SOFCs) and proton conducting fuel cells (PCFC or PCOFC). CFCs usually have the highest operating temperature of all fuel cells at about 600~1000oC for reasonably active charge transfer reactions at the electrode-electrolyte interface and ion transport through the electrolyte. This high CFC's operating temperature has limited practical applications. The goal of my Ph.D. research is to minimize the activation losses at the electrode/electrolyte interface by nanoscale engineering to achieve decent performance of ceramic fuel cells at lower operating temperatures (300~500oC). This dissertation has three main nanoscale surface engineering approaches according to the fuel cell components: electrode structure, composite electrolyte structures with thin interlayers, and the fabrication of three-dimensional fuel cell membrane-electrode assemblies (MEAs). We would call the first part of the dissertation as nanoscale electrode structure engineering for ceramic fuel cells. It describes the fabrication and investigation of morphologically stable model electrode structures with well-defined and sharp platinum/yttria stabilized zirconia (YSZ) interfaces to study geometric effects at triple phase boundaries (TPB), which is known as the actual electrochemical reaction site. A nanosphere lithography (NSL) technique using monodispersed silica nanoparticles is employed to deposit nonporous platinum electrodes containing close-packed arrays of circular openings through the underlying YSZ surface. These nano-structured dense Pt array cathodes exhibited better structural integrity and thermal stability at the fuel cell operating temperature of 450~500oC when compared to porous sputtered Pt electrodes. More importantly, electrochemical studies on geometrically well-defined Pt/YSZ sharp interfaces demonstrated that the cathode impedance and cell performance both scale almost linearly with aerial density of TPB length. These controlled experiments also allowed for the estimation of the area of the electrochemical reaction zone. This information can be used as a platform for designing the electrode structure to maximize the performance of ceramic fuel cells. The second part of the experiment is about electrolyte surface structure engineering by fabricating composite electrolyte structures. This study describes, both theoretically and experimentally, the role of doped ceria cathodic interlayers and their surface grain boundaries in enhancing oxygen incorporation kinetics. Quantum mechanical simulations of oxygen incorporation energetics support the experimental results and indicate a low activation energy of only 0.07eV for yttria-doped ceria (YDC), while the incorporation reaction on YSZ is activated by a significantly higher energy barrier of 0.38eV. For experiments, epitaxial and polycrystalline YDC, gadolinia-doped ceria (GDC) thin films were grown by pulsed laser deposition (PLD) on the cathode side of 300[Mu]m-thick single crystalline (100) and 100[Mu]m-thick polycrystalline YSZ substrates, respectively. For the composite electrolyte sample with YDC interlayer, the Oxygen isotope exchange experiment was conducted employing secondary ion mass spectrometry (SIMS) with high spatial resolution (50nm). The surface mapping result of 18O/16O shows high activity at surface grain boundary regions indicating that the grain boundary regions are electrochemically active for oxygen incorporation reaction. Fuel cell current-voltage behavior and electrochemical impedance spectroscopy measurements were carried out in the temperature range of 350oC-450oC on both single crystalline and polycrystalline interlayered cells. Results of dc and ac measurements confirm that cathodic resistances of cells with epitaxial doped-cerium oxides (GDC, YDC) layers are lower than that for the YSZ-only control cell. This is attributed to the higher surface exchange coefficient for doped-cerium oxides than for YSZ. Moreover, the role of grain boundary density at the cathode side external surface was investigated on surface-engineered electrode-membrane assemblies (MEA) having different doped-ceria surface grain sizes. MEAs having smaller surface grain size show better cell performance and correspondingly lower electrode interfacial resistance. Electrochemical measurements suggest that doped-ceria grain boundaries at the cathode side contribute to the enhancement of oxygen surface kinetics. These results provide an opportunity and a microstructure design pathway to improve performance of LT-SOFCs by surface engineering with nano-granular, catalytically superior thin doped-ceria cathodic interlayers. Thirdly, as a reaction surface engineering for SOFC, we investigated a novel method for creating a three-dimensional (3-D) fuel cell architecture to enhance fuel cell performance by increasing the area of the electrolyte membrane. The research describes the fabrication and operation of a low temperature 3-D protonically conducting ceramic fuel cell featuring a close packed and free standing crater patterned architecture achieved by nanospherical patterning (NSP) and dry etching techniques. The cell employed conformal layers of yttria-doped barium zirconate (BYZ) anhydrous electrolyte membrane (~120nm) sandwiched between thin (~70nm) sputtered porous Pt electrode layers. The fuel cell structure achieved the highest reported peak power densities up to 186 mW/cm2 at 450oC using hydrogen as fuel. To further investigate the proton conductivity of the electrolyte, which is BYZ, we studied the effect of crystalline structures on proton conductivity of BYZ thin films. The results showed that the grain boundaries impede the proton transport through the grain boundary and cause extremely high resistance for ionic transport in the film. This experimental result also can provide significant implications in designing proton conducting ceramic fuel cells. All these efforts and investigations were intended to enhance the ceramic fuel cell performance at low operating temperatures (300--500oC) by improving electrode/electrolyte interface electrochemical reactions. We expect to achieve further enhancement when we combine the approaches each other. For example, fabrication of three-dimensional fuel cells with doped-ceria interlayers and composite electrolyte structures with optimized electrode nano-structures. Investigations are on-going in our laboratory as a future work.

Book Yttria doped Zirconia as Solid Electrolyte for Fuel cell Applications

Download or read book Yttria doped Zirconia as Solid Electrolyte for Fuel cell Applications written by Benjamin Butz and published by Sudwestdeutscher Verlag Fur Hochschulschriften AG. This book was released on 2010-10 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: Yttria-doped zirconia (YDZ) has been used as electrolyte for solid oxide fuel cells (SOFCs) for many years. Nevertheless, fundamental questions regarding the thermal stability and thus the degradation of ionic conductivity of YDZ are controversially discussed in literature. In this study, thick-film and sol-gel prepared thin-film YDZ electrolytes with yttria concentrations in the range of 7.3-10 mol% were investigated by transmission electron microscopy (TEM) with emphasis on microstructural and chemical changes during high-temperature operation. In general, nanoscaled regions of metastable tetragonal YDZ were found in all investigated specimens. Depending on dopant concentration and thermal treatment, the microstructural and chemical decomposition of the material on the scale of 10 nm could be shown by quantitative analytical TEM. Hence, clarifying conclusions regarding the YDZ phase diagram in the targeted dopant range are drawn. A revised boundary of the instability region, in which YDZ has to be expected to decompose, is presented. In conclusion, the developing inhomogeneities in decomposing YDZ are discussed as reason for the decrease of ionic conductivity during operation.

Book Emerging Materials for Energy Conversion and Storage

Download or read book Emerging Materials for Energy Conversion and Storage written by Kuan Yew Cheong and published by Elsevier. This book was released on 2018-08-09 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. - Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices - Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications - Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field

Book Epitaxial Growth of Complex Metal Oxides

Download or read book Epitaxial Growth of Complex Metal Oxides written by Gertjan Koster and published by Elsevier. This book was released on 2015-05-14 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: The atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials. Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes. Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflection high-energy electron diffraction, pulsed laser deposition, hybrid molecular beam epitaxy, sputtering processes and chemical solution deposition techniques for the growth of oxide thin films. Part Two goes on to explore the effects of strain and stoichiometry on crystal structure and related properties, in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films in Part Three. Provides valuable information on the improvements in epitaxial growth processes that have resulted in higher quality films of complex metal oxides and further advances in applications for electronic and optical purposes Examines the techniques used in epitaxial thin film growth Describes the epitaxial growth and functional properties of complex metal oxides and explores the effects of strain and defects

Book A Combinatorial Study of Yttria Stabilized Zirconia as an Electrolyte Candidate for Intermediate Temperature Solid Oxide Fuel Cells

Download or read book A Combinatorial Study of Yttria Stabilized Zirconia as an Electrolyte Candidate for Intermediate Temperature Solid Oxide Fuel Cells written by Natalie Alexandra Becerra and published by . This book was released on 2012 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combinatorial research can have two main uses. The first is to perform cursory measurements of many materials to find a composition whose properties are ideal for some known application. The second function of combinatorial research is to test many materials for ideal values of a particular property in order to learn more about that property and variables that can alter it. This study focused on adequately measuring, modeling and calculating the parameters that affect the ionic conductivity of a particular binary spread of yttria stabilized zirconia. At three separate temperatures, the resulting ionic conductivity vs. composition graphs showed trends similar to those found in the literature for bulk materials, which validate the methods that were developed and optimized in this thesis. Further studies of activation energy and phase structure were performed and produced results that also match data found in the literature. Future work can expand on the methods detailed here and examine other combinations of materials such as zirconia co-doped with yttria and scandia or gadolinium-doped ceria.

Book Functional Thin Films Technology

Download or read book Functional Thin Films Technology written by Sam Zhang and published by CRC Press. This book was released on 2021-08-08 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Thin Films Technology features the functional aspects of thin films, such as their application in solar selective absorbers, fiber lasers, solid oxide fuel cells, piezo-related areas, catalysts, superhydrophobicity, semiconductors, and trace pesticides detection. It highlights developments and advances in the preparation, characterization, and applications of functional micro-/nano-scaled films and coatings. This book Presents technologies aimed at functionality used in nanoelectronics, solar selective absorbers, solid oxide fuel cells, piezo-applications, and sensors Covers absorbers, catalysts, anodic aluminum oxide, superhydrophobics, and semiconductor devices Features a chapter on transport phenomena associated to structures Discusses transport phenomena and material informatics This second volume in the two-volume set, Protective Thin Coatings and Functional Thin Films Technology, will benefit industry professionals and researchers working in areas related to semiconductors, optoelectronics, plasma technology, solid-state energy storages, and 5G, as well as advanced students studying electrical, mechanical, chemical, and materials engineering.

Book Metal Oxide Based Thin Film Structures

Download or read book Metal Oxide Based Thin Film Structures written by Nini Pryds and published by Elsevier. This book was released on 2017-09-07 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide-Based Thin Film Structures: Formation, Characterization and Application of Interface-Based Phenomena bridges the gap between thin film deposition and device development by exploring the synthesis, properties and applications of thin film interfaces. Part I deals with theoretical and experimental aspects of epitaxial growth, the structure and morphology of oxide-metal interfaces deposited with different deposition techniques and new developments in growth methods. Part II concerns analysis techniques for the electrical, optical, magnetic and structural properties of thin film interfaces. In Part III, the emphasis is on ionic and electronic transport at the interfaces of Metal-oxide thin films. Part IV discusses methods for tailoring metal oxide thin film interfaces for specific applications, including microelectronics, communication, optical electronics, catalysis, and energy generation and conservation. This book is an essential resource for anyone seeking to further their knowledge of metal oxide thin films and interfaces, including scientists and engineers working on electronic devices and energy systems and those engaged in research into electronic materials. - Introduces the theoretical and experimental aspects of epitaxial growth for the benefit of readers new to the field - Explores state-of-the-art analysis techniques and their application to interface properties in order to give a fuller understanding of the relationship between macroscopic properties and atomic-scale manipulation - Discusses techniques for tailoring thin film interfaces for specific applications, including information, electronics and energy technologies, making this book essential reading for materials scientists and engineers alike

Book Solid Oxide Fuel Cells 12  SOFC XII

Download or read book Solid Oxide Fuel Cells 12 SOFC XII written by S. C. Singhal and published by The Electrochemical Society. This book was released on 2011-04-25 with total page 3058 pages. Available in PDF, EPUB and Kindle. Book excerpt: This issue of ECS Transactions contains papers from the Twelfth International Symposium on Solid Oxide Fuel Cells (SOFC-XII),a continuing biennial series of symposia. The papers deal with materials for cell components and fabrication methods for components and complete cells. Also contained are papers on cell electrochemical performance and its modelling, stacks and systems, and prototype testing of SOFC demonstration units for different applications.

Book Materials for Energy

    Book Details:
  • Author : Sam Zhang
  • Publisher : CRC Press
  • Release : 2020-10-05
  • ISBN : 1000176673
  • Pages : 529 pages

Download or read book Materials for Energy written by Sam Zhang and published by CRC Press. This book was released on 2020-10-05 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discusses a wide range of material types, such as nanomaterials, carbonaceous electrocatalysts and electrolytes, thin films, phase change materials, 2D energy materials, triboelectric materials, and membrane materials Describes such applications as flexible energy storage devices, sensors, energy storage batteries, fuel and solar cells, photocatalytic wastewater treatment, and more Aimed at researchers and technologists working to solve alternative energy issues

Book Solid Oxide Fuel Cells

Download or read book Solid Oxide Fuel Cells written by Bin Zhu and published by John Wiley & Sons. This book was released on 2020-02-12 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents innovative approaches towards affordable, highly efficient, and reliable sustainable energy systems Written by leading experts on the subject, this book provides not only a basic introduction and understanding of conventional fuel cell principle, but also an updated view of the most recent developments in this field. It focuses on the new energy conversion technologies based on both electrolyte and electrolyte-free fuel cells?from advanced novel ceria-based composite electrolyte low temperature solid oxide fuel cells to non-electrolyte fuel cells as advanced fuel-to-electricity conversion technology. Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices is divided into three parts. Part I covers the latest developments of anode, electrolyte, and cathode materials as well as the SOFC technologies. Part II discusses the non-electrolyte or semiconductor-based membrane fuel cells. Part III focuses on engineering efforts on materials, technology, devices and stack developments, and looks at various applications and new opportunities of SOFC using both the electrolyte and non-electrolyte principles, including integrated fuel cell systems with electrolysis, solar energy, and more. -Offers knowledge on how to realize highly efficient fuel cells with novel device structures -Shows the opportunity to transform the future fuel cell markets and the possibility to commercialize fuel cells in an extended range of applications -Presents a unique collection of contributions on the development of solid oxide fuel cells from electrolyte based to non-electrolyte-based technology -Provides a more comprehensive understanding of the advances in fuel cells and bridges the knowledge from traditional SOFC to the new concept -Allows readers to track the development from the conventional SOFC to the non-electrolyte or single-component fuel cell Solid Oxide Fuel Cells: From Electrolyte-Based to Electrolyte-Free Devices will serve as an important reference work to students, scientists, engineers, researchers, and technology developers in the fuel cell field.

Book Modern Technologies for Creating the Thin film Systems and Coatings

Download or read book Modern Technologies for Creating the Thin film Systems and Coatings written by Nikolay Nikitenkov and published by BoD – Books on Demand. This book was released on 2017-03-08 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Development of the thin film and coating technologies (TFCT) made possible the technological revolution in electronics and through it the revolution in IT and communications in the end of the twentieth century. Now, TFCT penetrated in many sectors of human life and industry: biology and medicine; nuclear, fusion, and hydrogen energy; protection against corrosion and hydrogen embrittlement; jet engine; space materials science; and many others. Currently, TFCT along with nanotechnologies is the most promising for the development of almost all industries. The 20 chapters of this book present the achievements of thin-film technology in many areas mentioned above but more than any other in medicine and biology and energy saving and energy efficiency.