EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book X Ray and Neutron Structure Analysis in Materials Science

Download or read book X Ray and Neutron Structure Analysis in Materials Science written by J. Hasek and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last few decades, crystallography has become a wide and economically important field of science with many interesting applications in materials research, in different branches of physics, chemistry, geology, pharmacology, biochemistry, electronics, in many technological processes, machinery, heavy industry, etc. Twenty Nobel prizes awarded for achieve ments belonging to this· field only underline its distinction. Crystallo graphy has become a commonly used term, but - like a whale - it is much easier to recognize than to describe because of an extreme diversity of sub jects involved which range from highly sophisticated theories to the develop ment of routine technological processes or testing of materials in produc tion. It is apparent that only some aspects of selected topics could be included on a single occasion. The conference "ADVANCED METHODS IN X-RAY AND NEUTRON STRUCTURE ANALYSIS OF MATERIALS" held in Karlovy Vary (Czechoslovakia) on October 5-9, 1987, was intended to cover the most important crystallographic aspects of ma terials science. The conference was attended by 250 people from 16 countries (Belgium,Bulgaria, China, Czechoslovakia, Finland, France, FRG, GDR, Hungary, Italy, The Netherlands, Poland, Sweden, USA, USSR and Yugoslavia).

Book Structure Analysis by Small Angle X Ray and Neutron Scattering

Download or read book Structure Analysis by Small Angle X Ray and Neutron Scattering written by L.A. Feigin and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small-angle scattering of X rays and neutrons is a widely used diffraction method for studying the structure of matter. This method of elastic scattering is used in various branches of science and technology, includ ing condensed matter physics, molecular biology and biophysics, polymer science, and metallurgy. Many small-angle scattering studies are of value for pure science and practical applications. It is well known that the most general and informative method for investigating the spatial structure of matter is based on wave-diffraction phenomena. In diffraction experiments a primary beam of radiation influences a studied object, and the scattering pattern is analyzed. In principle, this analysis allows one to obtain information on the structure of a substance with a spatial resolution determined by the wavelength of the radiation. Diffraction methods are used for studying matter on all scales, from elementary particles to macro-objects. The use of X rays, neutrons, and electron beams, with wavelengths of about 1 A, permits the study of the condensed state of matter, solids and liquids, down to atomic resolution. Determination of the atomic structure of crystals, i.e., the arrangement of atoms in a unit cell, is an important example of this line of investigation.

Book Structure Determination by X Ray Crystallography

Download or read book Structure Determination by X Ray Crystallography written by M. F. C. Ladd and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crystallography may be described as the science of the structure of materi als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain mathematical results are assumed in order that their applications may be discussed. At the end of each chapter, a short bibliog raphy is given, which may be used to extend the scope of the treatment given here. In addition, reference is made in the text to specific sources of information. We have chosen not to discuss experimental methods extensively, as we consider that this aspect of crystallography is best learned through practical experience, but an attempt has been made to simulate the interpretive side of experimental crystallography in both examples and exercises.

Book Theoretical Concepts of X Ray Nanoscale Analysis

Download or read book Theoretical Concepts of X Ray Nanoscale Analysis written by Andrei Benediktovich and published by Springer Science & Business Media. This book was released on 2013-09-07 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a concise survey of modern theoretical concepts of X-ray materials analysis. The principle features of the book are: basics of X-ray scattering, interaction between X-rays and matter and new theoretical concepts of X-ray scattering. The various X-ray techniques are considered in detail: high-resolution X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering and X-ray residual stress analysis. All the theoretical methods presented use the unified physical approach. This makes the book especially useful for readers learning and performing data analysis with different techniques. The theory is applicable to studies of bulk materials of all kinds, including single crystals and polycrystals as well as to surface studies under grazing incidence. The book appeals to researchers and graduate students alike.

Book Neutron and X ray Spectroscopy

    Book Details:
  • Author : Françoise Hippert
  • Publisher : Springer Science & Business Media
  • Release : 2006-07-08
  • ISBN : 1402033370
  • Pages : 580 pages

Download or read book Neutron and X ray Spectroscopy written by Françoise Hippert and published by Springer Science & Business Media. This book was released on 2006-07-08 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources - Multi-technique approach set around a central theme, rather than a monograph on one technique - Emphasis on the complementarity of neutron spectroscopy and X-ray spectroscopy which are usually treated in separate books

Book Metal Oxide Nanoparticles  2 Volume Set

Download or read book Metal Oxide Nanoparticles 2 Volume Set written by Oliver Diwald and published by John Wiley & Sons. This book was released on 2021-09-14 with total page 903 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.

Book X Ray Scattering of Soft Matter

Download or read book X Ray Scattering of Soft Matter written by Norbert Stribeck and published by Springer Science & Business Media. This book was released on 2007-05-16 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This manual is a useful ready-reference guide to the analytical power of modern X-ray scattering in the field of soft matter. The author describes simple tools that can elucidate the mechanisms of structure evolution in the studied materials, and follows this up with a step-by-step guide to more advanced methods. Data analysis based on clear, unequivocal results is rendered simple and straightforward – with a stress on careful planning of experiments and adequate recording of all required data.

Book Transmission Electron Microscopy and Diffractometry of Materials

Download or read book Transmission Electron Microscopy and Diffractometry of Materials written by Brent Fultz and published by Springer Science & Business Media. This book was released on 2012-10-14 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains concepts of transmission electron microscopy (TEM) and x-ray diffractometry (XRD) that are important for the characterization of materials. The fourth edition adds important new techniques of TEM such as electron tomography, nanobeam diffraction, and geometric phase analysis. A new chapter on neutron scattering completes the trio of x-ray, electron and neutron diffraction. All chapters were updated and revised for clarity. The book explains the fundamentals of how waves and wavefunctions interact with atoms in solids, and the similarities and differences of using x-rays, electrons, or neutrons for diffraction measurements. Diffraction effects of crystalline order, defects, and disorder in materials are explained in detail. Both practical and theoretical issues are covered. The book can be used in an introductory-level or advanced-level course, since sections are identified by difficulty. Each chapter includes a set of problems to illustrate principles, and the extensive Appendix includes laboratory exercises.

Book Diffraction Analysis of the Microstructure of Materials

Download or read book Diffraction Analysis of the Microstructure of Materials written by Eric J. Mittemeijer and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 557 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.

Book Structural and Residual Stress Analysis by Nondestructive Methods

Download or read book Structural and Residual Stress Analysis by Nondestructive Methods written by V. Hauk and published by Elsevier. This book was released on 1997-11-10 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of stress analysis has gained its momentum from the widespread applications in industry and technology and has now become an important part of materials science. Various destructive as well as nondestructive methods have been developed for the determination of stresses. This timely book provides a comprehensive review of the nondestructive techniques for strain evaluation written by experts in their respective fields.The main part of the book deals with X-ray stress analysis (XSA), focussing on measurement and evaluation methods which can help to solve the problems of today, the numerous applications of metallic, polymeric and ceramic materials as well as of thin-film-substrate composites and of advanced microcomponents. Furthermore it contains data, results, hints and recommendations that are valuable to laboratories for the certification and accreditation of their stress analysis.Stress analysis is an active field in which many questions remain unsettled. Accordingly, unsolved problems and conflicting results are discussed as well. The assessment of the experimentally determined residual and structural stress states on the static and dynamic behavior of materials and components is handled in a separate chapter.Students and engineers of materials science and scientists working in laboratories and industries will find this book invaluable.

Book In situ Materials Characterization

Download or read book In situ Materials Characterization written by Alexander Ziegler and published by Springer Science & Business Media. This book was released on 2014-04-01 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The behavior of nanoscale materials can change rapidly with time either because the environment changes rapidly or because the influence of the environment propagates quickly across the intrinsically small dimensions of nanoscale materials. Extremely fast time resolution studies using X-rays, electrons and neutrons are of very high interest to many researchers and is a fast-evolving and interesting field for the study of dynamic processes. Therefore, in situ structural characterization and measurements of structure-property relationships covering several decades of length and time scales (from atoms to millimeters and femtoseconds to hours) with high spatial and temporal resolutions are crucially important to understand the synthesis and behavior of multidimensional materials. The techniques described in this book will permit access to the real-time dynamics of materials, surface processes and chemical and biological reactions at various time scales. This book provides an interdisciplinary reference for research using in situ techniques to capture the real-time structural and property responses of materials to surrounding fields using electron, optical and x-ray microscopies (e.g. scanning, transmission and low-energy electron microscopy and scanning probe microscopy) or in the scattering realm with x-ray, neutron and electron diffraction.

Book X Ray and Neutron Reflectivity  Principles and Applications

Download or read book X Ray and Neutron Reflectivity Principles and Applications written by Jean Daillant and published by Springer Science & Business Media. This book was released on 2003-07-01 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: The reflection of and neutrons from surfaces has existed as an x-rays exp- imental for almost it is in the last technique fifty Nevertheless, only years. decade that these methods have become as of enormously popular probes This the surfaces and interfaces. to be due to of several appears convergence of intense different circumstances. These include the more n- availability be measured orders tron and sources that can over (so reflectivity x-ray many of and the much weaker surface diffuse can now also be magnitude scattering of thin films and studied in some the detail); growing importance multil- basic the realization of the ers in both and technology research; important which in the of surfaces and and role roughness plays properties interfaces; the of statistical models to characterize the of finally development topology its and its characterization from on roughness, dependence growth processes The of and to surface scattering experiments. ability x-rays neutro4s study four five orders of in scale of surfaces over to magnitude length regardless their and also their to ability probe environment, temperature, pressure, etc. , makes these the choice for buried interfaces often probes preferred obtaining information about the microstructure of often in statistical a global surfaces, the local This is manner to complementary imaging microscopy techniques, of such studies in the literature witnessed the veritable by explosion published the last few Thus these lectures will useful for over a resource years.

Book Introduction to the Characterization of Residual Stress by Neutron Diffraction

Download or read book Introduction to the Characterization of Residual Stress by Neutron Diffraction written by M.T. Hutchings and published by CRC Press. This book was released on 2005-02-28 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 25 years the field of neutron diffraction for residual stress characterization has grown tremendously, and has matured from the stage of trial demonstrations to provide a practical tool with widespread applications in materials science and engineering. While the literature on the subject has grown commensurately, it has also remained

Book Electron Backscatter Diffraction in Materials Science

Download or read book Electron Backscatter Diffraction in Materials Science written by Adam J. Schwartz and published by Springer Science & Business Media. This book was released on 2010-03-11 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors. The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.

Book X Ray and Neutron Diffraction

Download or read book X Ray and Neutron Diffraction written by G. E. Bacon and published by Elsevier. This book was released on 2013-09-03 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: X-Ray and Neutron Diffraction describes the developments of the X-ray and the various research done in neutron diffraction. Part I of the book concerns the principles and applications of the X-ray and neutrons through their origins from classical crystallography. The book explains the use of diffraction methods to show the highly regular arrangement of atoms that forms a continuous pattern in three-dimensional space. The text evaluates the limitations and benefits of using the different types of radiation sources, whether these are X-rays, neutrons, or electrons. Part II is a collection of reprints discussing the development of techniques that includes a modification of the Bragg method, which is a method of X-ray crystal analysis. One paper presents an improved numerical method of two-dimensional Fourier synthesis for crystals. This method uses a greatly reduced process of arrangement of sets of figures found in the two-dimensional Fourier series. The book also notes the theoretical considerations and the practical details, and then addresses precautions against possible inclusions of errors in this method. The text deals as well with the magnetic scattering of neutrons, and one paper presents a simple method of gathering information about the magnetic moment of the neutron besides the traditional Stern-Gerlach method. Nuclear scientists and physicists, atomic researchers, and nuclear engineers will greatly appreciate the book.

Book Remote Compositional Analysis

Download or read book Remote Compositional Analysis written by Janice L. Bishop and published by Cambridge University Press. This book was released on 2019-11-28 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive overview of the spectroscopic, mineralogical, and geochemical techniques used in planetary remote sensing.

Book X Ray and Neutron Dynamical Diffraction

Download or read book X Ray and Neutron Dynamical Diffraction written by André Authier and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects the proceedings of the 23rd International Course of Crystallography, entitled "X-ray and Neutron Dynamical Diffraction, Theory and Applications," which took place in the fascinating setting of Erice in Sicily, Italy. It was run as a NATO Advanced Studies Institute with A. Authier (France) and S. Lagomarsino (Italy) as codirectors, and L. Riva di Sanseverino and P. Spadon (Italy) as local organizers, R. Colella (USA) and B. K. Tanner (UK) being the two other members of the organizing committee. It was attended by about one hundred participants from twenty four different countries. Two basic theories may be used to describe the diffraction of radiation by crystalline matter. The first one, the so-called geometrical, or kinematical theory, is approximate and is applicable to small, highly imperfect crystals. It is used for the determination of crystal structures and describes the diffraction of powders and polycrystalline materials. The other one, the so-called dynamical theory, is applicable to perfect or nearly perfect crystals. For that reason, dynamical diffraction of X-rays and neutrons constitutes the theoretical basis of a great variety of applications such as: • the techniques used for the characterization of nearly perfect high technology materials, semiconductors, piezoelectric, electrooptic, ferroelectric, magnetic crystals, • the X-ray optical devices used in all modem applications of Synchrotron Radiation (EXAFS, High Resolution X-ray Diffractometry, magnetic and nuclear resonant scattering, topography, etc. ), and • X-ray and neutron interferometry.