EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Wide Band Gap Semiconductor Nanowires 2

Download or read book Wide Band Gap Semiconductor Nanowires 2 written by Vincent Consonni and published by John Wiley & Sons. This book was released on 2014-08-08 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the second of two volumes, describes heterostructures and optoelectronic devices made from GaN and ZnO nanowires. Over the last decade, the number of publications on GaN and ZnO nanowires has grown exponentially, in particular for their potential optical applications in LEDs, lasers, UV detectors or solar cells. So far, such applications are still in their infancy, which we analyze as being mostly due to a lack of understanding and control of the growth of nanowires and related heterostructures. Furthermore, dealing with two different but related semiconductors such as ZnO and GaN, but also with different chemical and physical synthesis methods, will bring valuable comparisons in order to gain a general approach for the growth of wide band gap nanowires applied to optical devices.

Book Wide Bandgap Light Emitting Materials And Devices

Download or read book Wide Bandgap Light Emitting Materials And Devices written by Gertrude F. Neumark and published by John Wiley & Sons. This book was released on 2008-01-08 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide bandgap light emitters include laser diodes and light-emitting diodes (LED), the most modern diodes widely used in current technologies as microelectronics and optoelectronics. Rapid advances have been made during the last few years, with the result that more research is devoted to applications in line with the expanding market for optoelectronics. This volume deals with recent research results on wide bandgap light emitting materials, introducing new concepts for devices based on these materials. The editors, scientists with the best reputations, have invited authors from different institutions who are acknowledged researchers in the field as well as being involved in industrial applications. They represent several lines of research: III-nitride compounds, ZnO and ZnSe, the most promising materials for device applications.

Book Wide Band gap Nanowires for Light Emitting Diodes

Download or read book Wide Band gap Nanowires for Light Emitting Diodes written by Jordan Paul Chesin and published by . This book was released on 2015 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide band-gap nanowires composed of GaN and ZnO are promising materials for unique designs and potential efficiency improvement of light emitting diodes (LEDs) for solid state lighting. The large surface-to-volume ratio of nanowires provides facile strain-relaxation such that nanowires can be grown on substrates with a large lattice mismatch and remain free of threading dislocations. Specifically, the growth of wide band-gap nanowires directly on Si substrates is a promising platform for the fabrication of wafer-scale nanowire array-based LEDs. While nanowire-based LEDs have been previously demonstrated, there has been no work directly comparing the different potential designs of nanowire-based LEDs addressing how material-specific properties affect the light extraction and internal quantum efficiency (IQE). Furthermore, for scalable fabrication of nanowire array-based LEDs on Si a large degree of control over the nanowire synthesis is necessary, especially with regard to the nanowire length uniformity, vertical alignment relative to the growth substrate and the nanowire areal density. In this work we directly compare feasible designs for GaN-InGaN nanowire-based LEDs using a combination of photonic simulation and modeling. We compared the directed external quantum efficiency of III-nitride LEDs on silicon based on axial and radial nanowire heterostructures, considering m- and c-directional nanowires. The directed extraction efficiency was calculated using photonic simulations and the IQE was estimated using the A-B-C model. We found that m-directional axial heterostructures have the highest directed extraction efficiency, due to the strong polarization anisotropy of III-nitrides, and display similar IQE as c-directional axial heterostructures. By combining IQE and directed extraction, a range of expected directed external quantum efficiencies (EQEs) reveal that m-directional axial heterostructures have EQEs up to three times that of c-directional axial heterostructures, providing guidelines for the design of future III-nitride nanowire-based LEDs. While III-nitride nanowires are promising candidates, ZnO is an alternative with a higher exciton binding energy and excellent optical properties. To create a platform for the fabrication of ZnO nanowire array-based LEDs on Si, the growth of ZnO was investigated primarily using ZnO solution-processed seed-layers in vapor transport and condensation growth at high temperatures. Due to dependency of the carbothermal reduction of ZnO powder, which acts as the precursor source in the growth, the nanowire areal density was dependent on O2 flow. At low nanowire areal density, growth proceeded in a regime in which continuous nucleation of nanowires occurred throughout the growth, resulting in nanowires with a fixed aspect ratio, but widely varying lengths. At higher nanowire areal densities, the nanowires competed for source precursors in a surface-diffusion limited regime of growth in which the growth rate was dependent upon the nanowire diameter. We observed a critical nucleation diameter for nanowires in the continuous-nucleation regime, which was higher at lower oxygen flow rates. Thus, to achieve length uniformity we developed a two-stage growth method in which nanowires are nucleated at low oxygen flow in the continuous nucleation regime to set the nanowire diameter. In the second stage of growth, where conditions were shifted to the surface-diffusion limited regime, the large diameters set by the first stage of growth were designed to be in the range at which the growth rate does not vary substantially with diameter. The concept of this approach was extended to include control over the nanowire areal density, using sparse ZnO seed-layers. These ZnO nanowires retain excellent optical properties and we observed both demonstrative ptype and n-type doping, dependent on processing conditions, using individual nanowire electrical characterization. Thus, by achieving ZnO nanowire arrays with controlled nanowire areal density, excellent length uniformity and vertical alignment relative to the substrate, we have demonstrated a promising platform for the fabrication of scalable ZnO nanowire array-based LEDs.

Book Wide Band Gap Semiconductor Nanowires 1

Download or read book Wide Band Gap Semiconductor Nanowires 1 written by Vincent Consonni and published by John Wiley & Sons. This book was released on 2014-08-08 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: GaN and ZnO nanowires can by grown using a wide variety of methods from physical vapor deposition to wet chemistry for optical devices. This book starts by presenting the similarities and differences between GaN and ZnO materials, as well as the assets and current limitations of nanowires for their use in optical devices, including feasibility and perspectives. It then focuses on the nucleation and growth mechanisms of ZnO and GaN nanowires, grown by various chemical and physical methods. Finally, it describes the formation of nanowire heterostructures applied to optical devices.

Book Wide Bandgap Nanowires

Download or read book Wide Bandgap Nanowires written by Tuan Anh Pham and published by John Wiley & Sons. This book was released on 2022-07-04 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: WIDE BANDGAP NANOWIRES Comprehensive resource covering the synthesis, properties, and applications of wide bandgap nanowires This book presents first-hand knowledge on wide bandgap nanowires for sensor and energy applications. Taking a multidisciplinary approach, it brings together the materials science, physics and engineering aspects of wide bandgap nanowires, an area in which research has been accelerating dramatically in the past decade. Written by four well-qualified authors who have significant experience in the field, sample topics covered within the work include: Nanotechnology-enabled fabrication of wide bandgap nanowires, covering bottom-up, top-down and hybrid approaches Electrical, mechanical, optical, and thermal properties of wide bandgap nanowires, which are the basis for realizing sensor and energy device applications Measurement of electrical conductivity and fundamental electrical properties of nanowires Applications of nanowires, such as in flame sensors, biological sensors, and environmental monitoring For materials scientists, electrical engineers and professionals involved in the semiconductor industry, this book serves as a completely comprehensive resource to understand the topic of wide bandgap nanowires and how they can be successfully used in practical applications.

Book Wide Band Gap Semiconductor Nanowires 2

Download or read book Wide Band Gap Semiconductor Nanowires 2 written by Vincent Consonni and published by John Wiley & Sons. This book was released on 2014-09-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the second of two volumes, describes heterostructures and optoelectronic devices made from GaN and ZnO nanowires. Over the last decade, the number of publications on GaN and ZnO nanowires has grown exponentially, in particular for their potential optical applications in LEDs, lasers, UV detectors or solar cells. So far, such applications are still in their infancy, which we analyze as being mostly due to a lack of understanding and control of the growth of nanowires and related heterostructures. Furthermore, dealing with two different but related semiconductors such as ZnO and GaN, but also with different chemical and physical synthesis methods, will bring valuable comparisons in order to gain a general approach for the growth of wide band gap nanowires applied to optical devices.

Book Novel Compound Semiconductor Nanowires

Download or read book Novel Compound Semiconductor Nanowires written by Fumitaro Ishikawa and published by CRC Press. This book was released on 2017-10-17 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: One dimensional electronic materials are expected to be key components owing to their potential applications in nanoscale electronics, optics, energy storage, and biology. Besides, compound semiconductors have been greatly developed as epitaxial growth crystal materials. Molecular beam and metalorganic vapor phase epitaxy approaches are representative techniques achieving 0D–2D quantum well, wire, and dot semiconductor III-V heterostructures with precise structural accuracy with atomic resolution. Based on the background of those epitaxial techniques, high-quality, single-crystalline III-V heterostructures have been achieved. III-V Nanowires have been proposed for the next generation of nanoscale optical and electrical devices such as nanowire light emitting diodes, lasers, photovoltaics, and transistors. Key issues for the realization of those devices involve the superior mobility and optical properties of III-V materials (i.e., nitride-, phosphide-, and arsenide-related heterostructure systems). Further, the developed epitaxial growth technique enables electronic carrier control through the formation of quantum structures and precise doping, which can be introduced into the nanowire system. The growth can extend the functions of the material systems through the introduction of elements with large miscibility gap, or, alternatively, by the formation of hybrid heterostructures between semiconductors and another material systems. This book reviews recent progresses of such novel III-V semiconductor nanowires, covering a wide range of aspects from the epitaxial growth to the device applications. Prospects of such advanced 1D structures for nanoscience and nanotechnology are also discussed.

Book Wide Band Gap Semiconductor Nanowires 2

Download or read book Wide Band Gap Semiconductor Nanowires 2 written by Vincent Consonni and published by Wiley-ISTE. This book was released on 2014-09-15 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, the second of two volumes, describes heterostructures and optoelectronic devices made from GaN and ZnO nanowires. Over the last decade, the number of publications on GaN and ZnO nanowires has grown exponentially, in particular for their potential optical applications in LEDs, lasers, UV detectors or solar cells. So far, such applications are still in their infancy, which we analyze as being mostly due to a lack of understanding and control of the growth of nanowires and related heterostructures. Furthermore, dealing with two different but related semiconductors such as ZnO and GaN, but also with different chemical and physical synthesis methods, will bring valuable comparisons in order to gain a general approach for the growth of wide band gap nanowires applied to optical devices

Book Semiconductor Nanowires II  Properties and Applications

Download or read book Semiconductor Nanowires II Properties and Applications written by and published by Academic Press. This book was released on 2016-01-11 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Nanowires: Part B, and Volume 94 in the Semiconductor and Semimetals series, focuses on semiconductor nanowires. Includes experts contributors who review the most important recent literature Contains a broad view, including examination of semiconductor nanowires

Book Micro  and Nanotechnology of Wide Bandgap Semiconductors

Download or read book Micro and Nanotechnology of Wide Bandgap Semiconductors written by Anna B Piotrowska and published by Mdpi AG. This book was released on 2021-12-20 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Owing to their unique characteristics, direct wide bandgap energy, large breakdown field, and excellent electron transport properties, including operation at high temperature environments and low sensitivity to ionizing radiation, gallium nitride (GaN) and related group III-nitride heterostructures proved to be enabling materials for advanced optoelectronic and electronic devices and systems. Today, they are widely used in high performing short wavelength light emitting diodes (LEDs) and laser diodes (LDs), high performing radar, wireless telecommunications, as well 'green' power electronics. Impressive progress in GaN technology over the last 25 years has been driven by a continuously growing need for more advanced systems, and still new challenges arise and need to be solved. Actually, lighting industry, RF defene industry, and 5G mmWave telecommunication systems are driving forces for further intense research in order to reach full potential of GaN-based semiconductors. In the literature, there is a number of review papers and publications reporting technology progress and indicating future trends. In this Special Issue of Electronics, eight papers are published, the majority of them focusing materials and process technology of GaN-based devices fabricated on native GaN substrates. The specific topics include: GaN single crystalline substrates for electronic devices by ammonothermal and HVPE methods, Selective - Area Metalorganic Vapour - Phase Epitaxy of GaN and AlGaN/GaN hetereostructures for HEMTs, Advances in Ion Implantation of GaN and Related Materials including high pressure processing (lattice reconstruction) of ion implanted GaN (Mg and Be) and III-Nitride Nanowires for electronic and optoelectronic devices.

Book Wide Band Gap Semiconductor Nanowires 1

Download or read book Wide Band Gap Semiconductor Nanowires 1 written by Vincent Consonni and published by . This book was released on 2014 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the similarities and differences between GaN and ZnO materials, this book is devoted to the specific case of wires obtained from a given kind of semiconductors, namely the semiconducting materials with a direct and wide band gap (WBG). --

Book Wide Bandgap Light Emitting Materials And Devices

Download or read book Wide Bandgap Light Emitting Materials And Devices written by Gertrude F. Neumark and published by John Wiley & Sons. This book was released on 2007-10-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wide bandgap light emitters include laser diodes and light-emitting diodes (LED), the most modern diodes widely used in current technologies as microelectronics and optoelectronics. Rapid advances have been made during the last few years, with the result that more research is devoted to applications in line with the expanding market for optoelectronics. This volume deals with recent research results on wide bandgap light emitting materials, introducing new concepts for devices based on these materials. The editors, scientists with the best reputations, have invited authors from different institutions who are acknowledged researchers in the field as well as being involved in industrial applications. They represent several lines of research: III-nitride compounds, ZnO and ZnSe, the most promising materials for device applications.

Book Handbook of Luminescent Semiconductor Materials

Download or read book Handbook of Luminescent Semiconductor Materials written by Leah Bergman and published by CRC Press. This book was released on 2011-09-07 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses on the optical properties of wide-bandgap semiconductors, such as AlN, GaN, and ZnO. It then presents research on narrow-bandgap semiconductors and solid-state lighting. The book also covers the optical properties of semiconductors in the nanoscale regime, including quantum dots and nanocrystals. This handbook explains how photoluminescence spectroscopy is a powerful and practical analytical tool for revealing the fundamentals of light interaction and, thus, the optical properties of semiconductors. The book shows how luminescent semiconductors are used in lasers, photodiodes, infrared detectors, light-emitting diodes, solid-state lamps, solar energy, and biological imaging.

Book Extreme Band Engineering of III Nitride Nanowire Heterostructures for Electronic and Photonic Application

Download or read book Extreme Band Engineering of III Nitride Nanowire Heterostructures for Electronic and Photonic Application written by ATM Golam Sarwar and published by . This book was released on 2016 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bottom-up nanowires are attractive for realizing semiconductor devices with extreme heterostructures because strain relaxation through the nanowire sidewalls allows the combination of highly lattice mismatched materials without creating dislocations. The resulting nanowires are used to fabricate light-emitting diodes (LEDs), lasers, solar cells, and sensors. The aim of this work is to investigate extreme heterostructures, which are impossible or very hard to realize in conventional planar films, exploiting the strain accommodation property of nanowires and engineer their band structure for novel electronic and photonic applications. To this end, in this thesis, III-Nitride semiconductor nanowires are investigated. In the first part of this work, a complete growth phase diagram of InN nanowires on silicon using plasma assisted molecular beam epitaxy is developed, and structural and optical characteristics are mapped as a function of growth parameters. Next, a novel up-side down pendeoepitaxial growth of InN forming mushroom-like microstructures is demonstrated and detail structural and optical characterizations are performed. Based on this, a method to grow strain-free large area single crystalline InN or thin film is proposed and the growth of InN on patterned GaN is investigated. The optimized growth conditions developed for InN are further used to grow InGaN nanowires graded over the whole composition range. Numerical energy band simulation is performed to better understand the effect of polarization charge on photo-carrier transport in these extremely graded nanowires. A novel photodetector device with negative differential photocurrent is demonstrated using the graded InGaN nanowires. In the second part of this thesis, polarization-induced nanowire light emitting diodes (PINLEDs) are investigated. The electrical and optical properties of the nanowire heterostructure are engineered and optimized for ultraviolet and deep ultraviolet applications. The electrical efficiency of the devices is engineered by either aggressively grading the p-type base or by integrating a polarization-induced tunnel junction at the base. The active region of the LEDs is tailored to have efficient emission at deep ultraviolet wavelengths by either extreme quantum confinement or by softening the potential profile of the quantum wells. Finally, the growth of III-N nanowire on metal substrate is demonstrated for cheap and scalable nanowire device applications.

Book Advances in III V Semiconductor Nanowires and Nanodevices

Download or read book Advances in III V Semiconductor Nanowires and Nanodevices written by Jianye Li and published by . This book was released on 2018-02-15 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanowires exhibit novel electronic and optical properties due to their unique one-dimensional structure and quantum confinement effects. In particular, III-V semiconductor nanowires have been of great scientific and technological interest for next generation optoelectronic devices including transistors, light emitting diodes, lasers, photodetectors, and solar cells. Advances in III-V Semiconductor Nanowires and Nanodevicesis an account of recent progress in the synthesis, characterization, physical properties, device fabrication, and applications of binary compound and ternary alloy III-V semiconductor nanowires. Each chapter is prepared by renowned experts in the field, describing the current state of knowledge and key areas of research. The book is written at the expert level, but also serves as a guide for researchers or graduate students aiming to enter semiconductor research.

Book Electronic and Optical Properties of Silicon Nanowires

Download or read book Electronic and Optical Properties of Silicon Nanowires written by Daryoush Shiri and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: