EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Well posedness of a Fluid particle Interaction Model

Download or read book Well posedness of a Fluid particle Interaction Model written by Jens Klotzky and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Theory of Evolutionary Fluid Flow Structure Interactions

Download or read book Mathematical Theory of Evolutionary Fluid Flow Structure Interactions written by Barbara Kaltenbacher and published by Springer. This book was released on 2018-06-21 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the study of coupled partial differential equation models, which describe complex dynamical systems occurring in modern scientific applications such as fluid/flow-structure interactions. The first chapter provides a general description of a fluid-structure interaction, which is formulated within a realistic framework, where the structure subject to a frictional damping moves within the fluid. The second chapter then offers a multifaceted description, with often surprising results, of the case of the static interface; a case that is argued in the literature to be a good model for small, rapid oscillations of the structure. The third chapter describes flow-structure interaction where the compressible Navier-Stokes equations are replaced by the linearized Euler equation, while the solid is taken as a nonlinear plate, which oscillates in the surrounding gas flow. The final chapter focuses on a the equations of nonlinear acoustics coupled with linear acoustics or elasticity, as they arise in the context of high intensity ultrasound applications.

Book Fluid Structure Interaction and Biomedical Applications

Download or read book Fluid Structure Interaction and Biomedical Applications written by Tomáš Bodnár and published by Springer. This book was released on 2014-10-13 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holistic view of the latest findings on the subject, and of the relevant open questions. For the same reason we expect the book to become a trusted companion for researchers from diverse disciplines, such as mathematics, physics, mathematical biology, bioengineering and medicine.

Book Hemodynamical Flows

    Book Details:
  • Author : Giovanni P. Galdi
  • Publisher : Springer Science & Business Media
  • Release : 2008-03-18
  • ISBN : 3764378050
  • Pages : 512 pages

Download or read book Hemodynamical Flows written by Giovanni P. Galdi and published by Springer Science & Business Media. This book was released on 2008-03-18 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys research results on the physical and mathematical modeling, as well as the numerical simulation of complex fluid and structural mechanical processes occurring in the human blood circulation system. Topics treated include continuum mechanical description; choice of suitable liquid and wall models; mathematical analysis of coupled models; numerical methods for flow simulation; parameter identification and model calibration; fluid-solid interaction; mathematical analysis of piping systems; particle transport in channels and pipes; artificial boundary conditions, and many more. The book was developed from lectures presented by the authors at the Oberwolfach Research Institute (MFO), in Oberwolfach-Walke, Germany, November, 2005.

Book Theory  Numerics and Applications of Hyperbolic Problems II

Download or read book Theory Numerics and Applications of Hyperbolic Problems II written by Christian Klingenberg and published by Springer. This book was released on 2018-06-27 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second of two volumes, this edited proceedings book features research presented at the XVI International Conference on Hyperbolic Problems held in Aachen, Germany in summer 2016. It focuses on the theoretical, applied, and computational aspects of hyperbolic partial differential equations (systems of hyperbolic conservation laws, wave equations, etc.) and of related mathematical models (PDEs of mixed type, kinetic equations, nonlocal or/and discrete models) found in the field of applied sciences.

Book ON THE NONLINEAR INTERACTION OF CHARGED PARTICLES WITH FLUIDS

Download or read book ON THE NONLINEAR INTERACTION OF CHARGED PARTICLES WITH FLUIDS written by Elie Abdo and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: We consider three different phenomena governing the fluid flow in the presence of charged particles: electroconvection in fluids, electroconvection in porous media, and electrodiffusion. Electroconvecton in fluids is mathematically represented by a nonlinear drift-diffusion partial differential equation describing the time evolution of a surface charge density in a two-dimensional incompressible fluid. The velocity of the fluid evolves according to Navier-Stokes equations forced nonlinearly by the electrical forces due to the presence of the charge density. The resulting model is reminiscent of the quasi-geostrophic equation, where the main difference resides in the dependence of the drift velocity on the charge density. When the fluid flows through a porous medium, the velocity and the electrical forces are related according to Darcy's law, which yields a challenging doubly nonlinear and doubly nonlocal model describing electroconvection in porous media. A different type of particle-fluid interaction, called electrodiffusion, is also considered. This latter phenomenon is described by nonlinearly advected and nonlinearly forced continuity equations tracking the time evolution of the concentrations of many ionic species having different valences and diffusivities and interacting with an incompressible fluid. This work is based on [1, 2, 3] and addresses the global well-posedness, long-time dynamics, and other features associated with the aforementioned three models. REFERENCES:[1] E. Abdo, M. Ignatova, Long time dynamics of a model of electroconvection, Trans. Amer. Math. Soc. 374 (2021), 5849-5875. [2] E. Abdo, M. Ignatova, Long Time Finite Dimensionality in Charged Fluids, Nonlinearity 34 (9) (2021), 6173-6209. [3] E. Abdo, M. Ignatova, On Electroconvection in Porous Media, to appear in Indiana University Mathematics Journal (2023).

Book Particles in Flows

    Book Details:
  • Author : Tomáš Bodnár
  • Publisher : Birkhäuser
  • Release : 2017-09-30
  • ISBN : 3319602829
  • Pages : 526 pages

Download or read book Particles in Flows written by Tomáš Bodnár and published by Birkhäuser. This book was released on 2017-09-30 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to face particles in flows from many different, but essentially interconnected sides and points of view. Thus the selection of authors and topics represented in the chapters, ranges from deep mathematical analysis of the associated models, through the techniques of their numerical solution, towards real applications and physical implications. The scope and structure of the book as well as the selection of authors was motivated by the very successful summer course and workshop "Particles in Flows'' that was held in Prague in the August of 2014. This meeting revealed the need for a book dealing with this specific and challenging multidisciplinary subject, i.e. particles in industrial, environmental and biomedical flows and the combination of fluid mechanics, solid body mechanics with various aspects of specific applications.

Book Finite Volumes for Complex Applications VII Elliptic  Parabolic and Hyperbolic Problems

Download or read book Finite Volumes for Complex Applications VII Elliptic Parabolic and Hyperbolic Problems written by Jürgen Fuhrmann and published by Springer. This book was released on 2014-05-16 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: The methods considered in the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) have properties which offer distinct advantages for a number of applications. The second volume of the proceedings covers reviewed contributions reporting successful applications in the fields of fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory and other topics. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.

Book Advanced Approaches in Turbulence

Download or read book Advanced Approaches in Turbulence written by Paul Durbin and published by Elsevier. This book was released on 2021-07-24 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Approaches in Turbulence: Theory, Modeling, Simulation and Data Analysis for Turbulent Flows focuses on the updated theory, simulation and data analysis of turbulence dealing mainly with turbulence modeling instead of the physics of turbulence. Beginning with the basics of turbulence, the book discusses closure modeling, direct simulation, large eddy simulation and hybrid simulation. The book also covers the entire spectrum of turbulence models for both single-phase and multi-phase flows, as well as turbulence in compressible flow. Turbulence modeling is very extensive and continuously updated with new achievements and improvements of the models. Modern advances in computer speed offer the potential for elaborate numerical analysis of turbulent fluid flow while advances in instrumentation are creating large amounts of data. This book covers these topics in great detail. - Covers the fundamentals of turbulence updated with recent developments - Focuses on hybrid methods such as DES and wall-modeled LES - Gives an updated treatment of numerical simulation and data analysis

Book Collective Dynamics of Particles

Download or read book Collective Dynamics of Particles written by Cristian Marchioli and published by Springer. This book was released on 2017-02-21 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys the state-of-the-art methods that are currently available to model and simulate the presence of rigid particles in a fluid flow. For particles that are very small relative to the characteristic flow scales and move without interaction with other particles, effective equations of motion for particle tracking are formulated and applied (e.g. in gas-solid flows). For larger particles, for particles in liquid-solid flows and for particles that interact with each other or possibly modify the overall flow detailed model are presented. Special attention is given to the description of the approximate force coupling method (FCM) as a more general treatment for small particles, and derivations in the context of low Reynolds numbers for the particle motion as well as application at finite Reynolds numbers are provided. Other topics discussed in the book are the relation to higher resolution immersed boundary methods, possible extensions to non-spherical particles and examples of applications of such methods to dispersed multiphase flows.

Book Fluid structure Interactions

Download or read book Fluid structure Interactions written by Thomas Richter and published by Springer. This book was released on 2017-08-26 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book starts by introducing the fundamental concepts of mathematical continuum mechanics for fluids and solids and their coupling. Special attention is given to the derivation of variational formulations for the subproblems describing fluid- and solid-mechanics as well as the coupled fluid-structure interaction problem. Two monolithic formulations for fluid-structure interactions are described in detail: the well-established ALE formulation and the modern Fully Eulerian formulation, which can effectively deal with problems featuring large deformation and contact. Further, the book provides details on state-of-the-art discretization schemes for fluid- and solid-mechanics and considers the special needs of coupled problems with interface-tracking and interface-capturing techniques. Lastly, advanced topics like goal-oriented error estimation, multigrid solution and gradient-based optimization schemes are discussed in the context of fluid-structure interaction problems.

Book Lectures on Fluid Dynamics

    Book Details:
  • Author : Roman Jackiw
  • Publisher : Springer Science & Business Media
  • Release : 2013-03-09
  • ISBN : 1475736657
  • Pages : 121 pages

Download or read book Lectures on Fluid Dynamics written by Roman Jackiw and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the motivation and reviewing the classical theory in a new form; Discusses conservation laws and Euler equations; For one-dimensional cases, the models presented are completely integrable

Book Control Problems for Conservation Laws with Traffic Applications

Download or read book Control Problems for Conservation Laws with Traffic Applications written by Alexandre Bayen and published by Springer Nature. This book was released on 2022-04-23 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conservation and balance laws on networks have been the subject of much research interest given their wide range of applications to real-world processes, particularly traffic flow. This open access monograph is the first to investigate different types of control problems for conservation laws that arise in the modeling of vehicular traffic. Four types of control problems are discussed - boundary, decentralized, distributed, and Lagrangian control - corresponding to, respectively, entrance points and tolls, traffic signals at junctions, variable speed limits, and the use of autonomy and communication. Because conservation laws are strictly connected to Hamilton-Jacobi equations, control of the latter is also considered. An appendix reviewing the general theory of initial-boundary value problems for balance laws is included, as well as an appendix illustrating the main concepts in the theory of conservation laws on networks.

Book Dynamics of Bubbles  Drops and Rigid Particles

Download or read book Dynamics of Bubbles Drops and Rigid Particles written by Z. Zapryanov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Objective and Scope Bubbles, drops and rigid particles occur everywhere in life, from valuable industrial operations like gas-liquid contracting, fluidized beds and extraction to such vital natural processes as fermentation, evaporation, and sedimentation. As we become increasingly aware of their fundamental role in industrial and biological systems, we are driven to know more about these fascinating particles. It is no surprise, therefore, that their practical and theoretical implications have aroused great interest among the scientific community and have inspired a growing number of studies and publications. Over the past ten years advances in the field of small Reynolds numbers flows and their technological and biological applications have given rise to several definitive monographs and textbooks in the area. In addition, the past three decades have witnessed enormous progress in describing quantitatively the behaviour of these particles. However, to the best of our knowledge, there are still no available books that reflect such achievements in the areas of bubble and drop deformation, hydrodynamic interactions of deformable fluid particles at low and moderate Reynolds numbers and hydrodynamic interactions of particles in oscillatory flows. Indeed, only one more book is dedicated entirely to the behaviour of bubbles, drops and rigid particles ["Bubbles, Drops and Particles" by Clift et al. (1978)] and the authors state its limitations clearly in the preface: "We treat only phenomena in which particle-particle interactions are of negligible importance. Hence, direct application of the book is limited to single-particle systems of dilute suspensions.

Book Multifield Problems in Solid and Fluid Mechanics

Download or read book Multifield Problems in Solid and Fluid Mechanics written by Rainer Helmig and published by Springer Science & Business Media. This book was released on 2006-11-28 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an overview of the research projects within the SFB 404 "Mehrfeldprobleme in der Kontinuumsmechanik". The book is for researchers and graduate students in applied mechanics and civil engineering.

Book Kinetic Formulation of Conservation Laws

Download or read book Kinetic Formulation of Conservation Laws written by B. Perthame and published by Oxford University Press. This book was released on 2002-12-05 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by a well-known expert in the field, the focus of this book is on an innovative mathematical and numerical theory which applies to classical models of physics such as shock waves and balance laws. The text is based on early works in common with P.L. Lions (field medalist).

Book Handbook of Mathematical Fluid Dynamics

Download or read book Handbook of Mathematical Fluid Dynamics written by S. Friedlander and published by Elsevier. This book was released on 2002-07-09 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.