Download or read book Weighted Residual Methods written by Mohammad Hatami and published by Academic Press. This book was released on 2017-10-30 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Weighted Residual Methods: Principles, Modifications and Applications introduces a range of WRMs, providing examples that show how they can be used to solve complex engineering problems with greater accuracy and computational efficiency. Examples focus on non-linear problems, including the motion of a spherical particle, nanofluid flow and heat transfer, magnetohydrodynamic flow and heat transfer, and micropolar fluid flow and heat transfer. These are important factors in understanding processes, such as filtration, combustion, air and water pollution and micro contamination. In addition to the applications, the reader is provided with full derivations of equations and summaries of important field research. - Includes the basic code for each method, giving readers a head start in using WRMs for computational modeling - Provides full derivations of important governing equations in a number of emerging fields of study - Offers numerous, detailed examples of a range of applications in heat transfer, nanotechnology, medicine, and more
Download or read book Advanced Numerical and Semi Analytical Methods for Differential Equations written by Snehashish Chakraverty and published by John Wiley & Sons. This book was released on 2019-04-16 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.
Download or read book The Method of Weighted Residuals and Variational Principles written by Bruce A. Finlayson and published by SIAM. This book was released on 2013-12-30 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book covers the solution of differential equations in science and engineering in such as way as to provide an introduction for novices before progressing toward increasingly more difficult problems. The Method of Weighted Residuals and Variational Principles describes variational principles, including how to find them and how to use them to construct error bounds and create stationary principles. The book also illustrates how to use simple methods to find approximate solutions, shows how to use the finite element method for more complex problems, and provides detailed information on error bounds. Problem sets make this book ideal for self-study or as a course text.
Download or read book The Finite Element Method written by Bofang Zhu and published by John Wiley & Sons. This book was released on 2018-03-12 with total page 873 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive review of the Finite Element Method (FEM), this book provides the fundamentals together with a wide range of applications in civil, mechanical and aeronautical engineering. It addresses both the theoretical and numerical implementation aspects of the FEM, providing examples in several important topics such as solid mechanics, fluid mechanics and heat transfer, appealing to a wide range of engineering disciplines. Written by a renowned author and academician with the Chinese Academy of Engineering, The Finite Element Method would appeal to researchers looking to understand how the fundamentals of the FEM can be applied in other disciplines. Researchers and graduate students studying hydraulic, mechanical and civil engineering will find it a practical reference text.
Download or read book Adaptive Finite Element Methods for Differential Equations written by Wolfgang Bangerth and published by Birkhäuser. This book was released on 2013-11-11 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: These Lecture Notes have been compiled from the material presented by the second author in a lecture series ('Nachdiplomvorlesung') at the Department of Mathematics of the ETH Zurich during the summer term 2002. Concepts of 'self adaptivity' in the numerical solution of differential equations are discussed with emphasis on Galerkin finite element methods. The key issues are a posteriori er ror estimation and automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method (or shortly D WR method) for goal-oriented error estimation is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. 'Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. The basics of the DWR method and various of its applications are described in the following survey articles: R. Rannacher [114], Error control in finite element computations. In: Proc. of Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds), pp. 247-278. Kluwer Academic Publishers, 1998. M. Braack and R. Rannacher [42], Adaptive finite element methods for low Mach-number flows with chemical reactions.
Download or read book The Finite Element Method for Boundary Value Problems written by Karan S. Surana and published by CRC Press. This book was released on 2016-11-17 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by two well-respected experts in the field, The Finite Element Method for Boundary Value Problems: Mathematics and Computations bridges the gap between applied mathematics and application-oriented computational studies using FEM. Mathematically rigorous, the FEM is presented as a method of approximation for differential operators that are mathematically classified as self-adjoint, non-self-adjoint, and non-linear, thus addressing totality of all BVPs in various areas of engineering, applied mathematics, and physical sciences. These classes of operators are utilized in various methods of approximation: Galerkin method, Petrov-Galerkin Method, weighted residual method, Galerkin method with weak form, least squares method based on residual functional, etc. to establish unconditionally stable finite element computational processes using calculus of variations. Readers are able to grasp the mathematical foundation of finite element method as well as its versatility of applications. h-, p-, and k-versions of finite element method, hierarchical approximations, convergence, error estimation, error computation, and adaptivity are additional significant aspects of this book.
Download or read book Finite Elements and Approximation written by O. C. Zienkiewicz and published by Courier Corporation. This book was released on 2013-04-22 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.
Download or read book Computational Techniques for Fluid Dynamics 1 written by Clive A.J. Fletcher and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This well-known 2-volume textbook provides senior undergraduate and postgraduate engineers, scientists and applied mathematicians with the specific techniques, and the framework to develop skills in using the techniques in the various branches of computational fluid dynamics. A solutions manual to the exercises is in preparation.
Download or read book The Scaled Boundary Finite Element Method written by John P. Wolf and published by John Wiley & Sons. This book was released on 2003-03-14 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: A novel computational procedure called the scaled boundary finite-element method is described which combines the advantages of the finite-element and boundary-element methods : Of the finite-element method that no fundamental solution is required and thus expanding the scope of application, for instance to anisotropic material without an increase in complexity and that singular integrals are avoided and that symmetry of the results is automatically satisfied. Of the boundary-element method that the spatial dimension is reduced by one as only the boundary is discretized with surface finite elements, reducing the data preparation and computational efforts, that the boundary conditions at infinity are satisfied exactly and that no approximation other than that of the surface finite elements on the boundary is introduced. In addition, the scaled boundary finite-element method presents appealing features of its own : an analytical solution inside the domain is achieved, permitting for instance accurate stress intensity factors to be determined directly and no spatial discretization of certain free and fixed boundaries and interfaces between different materials is required. In addition, the scaled boundary finite-element method combines the advantages of the analytical and numerical approaches. In the directions parallel to the boundary, where the behaviour is, in general, smooth, the weighted-residual approximation of finite elements applies, leading to convergence in the finite-element sense. In the third (radial) direction, the procedure is analytical, permitting e.g. stress-intensity factors to be determined directly based on their definition or the boundary conditions at infinity to be satisfied exactly. In a nutshell, the scaled boundary finite-element method is a semi-analytical fundamental-solution-less boundary-element method based on finite elements. The best of both worlds is achieved in two ways: with respect to the analytical and numerical methods and with respect to the finite-element and boundary-element methods within the numerical procedures. The book serves two goals: Part I is an elementary text, without any prerequisites, a primer, but which using a simple model problem still covers all aspects of the method and Part II presents a detailed derivation of the general case of statics, elastodynamics and diffusion.
Download or read book TEXTBOOK OF FINITE ELEMENT ANALYSIS written by P. SESHU and published by PHI Learning Pvt. Ltd.. This book was released on 2003-01-01 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for a one-semester course in Finite Element Method, this compact and well-organized text presents FEM as a tool to find approximate solutions to differential equations. This provides the student a better perspective on the technique and its wide range of applications. This approach reflects the current trend as the present-day applications range from structures to biomechanics to electromagnetics, unlike in conventional texts that view FEM primarily as an extension of matrix methods of structural analysis. After an introduction and a review of mathematical preliminaries, the book gives a detailed discussion on FEM as a technique for solving differential equations and variational formulation of FEM. This is followed by a lucid presentation of one-dimensional and two-dimensional finite elements and finite element formulation for dynamics. The book concludes with some case studies that focus on industrial problems and Appendices that include mini-project topics based on near-real-life problems. Postgraduate/Senior undergraduate students of civil, mechanical and aeronautical engineering will find this text extremely useful; it will also appeal to the practising engineers and the teaching community.
Download or read book An Introduction to Meshfree Methods and Their Programming written by G.R. Liu and published by Springer Science & Business Media. This book was released on 2005-12-05 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite difference method (FDM) hasbeen used tosolve differential equation systems for centuries. The FDM works well for problems of simple geometry and was widely used before the invention of the much more efficient, robust finite element method (FEM). FEM is now widely used in handling problems with complex geometry. Currently, we are using and developing even more powerful numerical techniques aiming to obtain more accurate approximate solutions in a more convenient manner for even more complex systems. The meshfree or meshless method is one such phenomenal development in the past decade, and is the subject of this book. There are many MFree methods proposed so far for different applications. Currently, three monographs on MFree methods have been published. Mesh Free Methods, Moving Beyond the Finite Element Method d by GR Liu (2002) provides a systematic discussion on basic theories, fundamentals for MFree methods, especially on MFree weak-form methods. It provides a comprehensive record of well-known MFree methods and the wide coverage of applications of MFree methods to problems of solids mechanics (solids, beams, plates, shells, etc.) as well as fluid mechanics. The Meshless Local Petrov-Galerkin (MLPG) Method d by Atluri and Shen (2002) provides detailed discussions of the meshfree local Petrov-Galerkin (MLPG) method and itsvariations. Formulations and applications of MLPG are well addressed in their book.
Download or read book The Finite Element Method for Initial Value Problems written by Karan S. Surana and published by CRC Press. This book was released on 2017-10-17 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike most finite element books that cover time dependent processes (IVPs) in a cursory manner, The Finite Element Method for Initial Value Problems: Mathematics and Computations focuses on the mathematical details as well as applications of space-time coupled and space-time decoupled finite element methods for IVPs. Space-time operator classification, space-time methods of approximation, and space-time calculus of variations are used to establish unconditional stability of space-time methods during the evolution. Space-time decoupled methods are also presented with the same rigor. Stability of space-time decoupled methods, time integration of ODEs including the finite element method in time are presented in detail with applications. Modal basis, normal mode synthesis techniques, error estimation, and a posteriori error computations for space-time coupled as well as space-time decoupled methods are presented. This book is aimed at a second-semester graduate level course in FEM.
Download or read book Computational Galerkin Methods written by C. A. J. Fletcher and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the wake of the computer revolution, a large number of apparently uncon nected computational techniques have emerged. Also, particular methods have assumed prominent positions in certain areas of application. Finite element methods, for example, are used almost exclusively for solving structural problems; spectral methods are becoming the preferred approach to global atmospheric modelling and weather prediction; and the use of finite difference methods is nearly universal in predicting the flow around aircraft wings and fuselages. These apparently unrelated techniques are firmly entrenched in computer codes used every day by practicing scientists and engineers. Many of these scientists and engineers have been drawn into the computational area without the benefit offormal computational training. Often the formal computational training we do provide reinforces the arbitrary divisions between the various computational methods available. One of the purposes of this monograph is to show that many computational techniques are, indeed, closely related. The Galerkin formulation, which is being used in many subject areas, provides the connection. Within the Galerkin frame-work we can generate finite element, finite difference, and spectral methods.
Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2001-12-03 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Download or read book The Finite Element Method in Engineering written by Singiresu S. Rao and published by Elsevier. This book was released on 2011-03-15 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Finite Element Method in Engineering is the only book to provide a broad overview of the underlying principles of finite element analysis and where it fits into the larger context of other mathematically based engineering analytical tools. This is an updated and improved version of a finite element text long noted for its practical applications approach, its readability, and ease of use. Students will find in this textbook a thorough grounding of the mathematical principles underlying the popular, analytical methods for setting up a finite element solution based on mathematical equations. The book provides a host of real-world applications of finite element analysis, from structural design to problems in fluid mechanics and thermodynamics. It has added new sections on the assemblage of element equations, as well as an important new comparison between finite element analysis and other analytical methods showing advantages and disadvantages of each. This book will appeal to students in mechanical, structural, electrical, environmental and biomedical engineering. The only book to provide a broadoverview of the underlying principles of finite element analysis and where it fits into the larger context of other mathematically based engineering analytical tools. New sections added on the assemblage of element equations, and an important new comparison between finite element analysis and other analytical methods, showing the advantages and disadvantages of each.
Download or read book Introduction to Finite Element Analysis and Design written by Nam-Ho Kim and published by John Wiley & Sons. This book was released on 2018-05-24 with total page 1074 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces the basic concepts of FEM in an easy-to-use format so that students and professionals can use the method efficiently and interpret results properly Finite element method (FEM) is a powerful tool for solving engineering problems both in solid structural mechanics and fluid mechanics. This book presents all of the theoretical aspects of FEM that students of engineering will need. It eliminates overlong math equations in favour of basic concepts, and reviews of the mathematics and mechanics of materials in order to illustrate the concepts of FEM. It introduces these concepts by including examples using six different commercial programs online. The all-new, second edition of Introduction to Finite Element Analysis and Design provides many more exercise problems than the first edition. It includes a significant amount of material in modelling issues by using several practical examples from engineering applications. The book features new coverage of buckling of beams and frames and extends heat transfer analyses from 1D (in the previous edition) to 2D. It also covers 3D solid element and its application, as well as 2D. Additionally, readers will find an increase in coverage of finite element analysis of dynamic problems. There is also a companion website with examples that are concurrent with the most recent version of the commercial programs. Offers elaborate explanations of basic finite element procedures Delivers clear explanations of the capabilities and limitations of finite element analysis Includes application examples and tutorials for commercial finite element software, such as MATLAB, ANSYS, ABAQUS and NASTRAN Provides numerous examples and exercise problems Comes with a complete solution manual and results of several engineering design projects Introduction to Finite Element Analysis and Design, 2nd Edition is an excellent text for junior and senior level undergraduate students and beginning graduate students in mechanical, civil, aerospace, biomedical engineering, industrial engineering and engineering mechanics.
Download or read book Finite Element Simulation in Surface and Subsurface Hydrology written by George F. Pinder and published by Elsevier. This book was released on 2013-09-03 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite Element Simulation in Surface and Subsurface Hydrology provides an introduction to the finite element method and how the method is applied to problems in surface and subsurface hydrology. The book presents the basic concepts of the numerical methods and the finite element approach; applications to problems on groundwater flow and mass and energy transport; and applications to problems that involve surface water dynamics. Computational methods for the solution of differential equations; classification of partial differential equations; finite difference and weighted residual integral techniques; and The Galerkin finite element method are discussed as well. The text will be of value to engineers, hydrologists, and students in the field of engineering.