Download or read book Wavelet Based Approximation Schemes for Singular Integral Equations written by Madan Mohan Panja and published by CRC Press. This book was released on 2020-06-07 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.
Download or read book Singular Integral Equations written by Ricardo Estrada and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical problems that are usually solved by differential equation techniques can be solved more effectively by integral equation methods. This work focuses exclusively on singular integral equations and on the distributional solutions of these equations. A large number of beautiful mathematical concepts are required to find such solutions, which in tum, can be applied to a wide variety of scientific fields - potential theory, me chanics, fluid dynamics, scattering of acoustic, electromagnetic and earth quake waves, statistics, and population dynamics, to cite just several. An integral equation is said to be singular if the kernel is singular within the range of integration, or if one or both limits of integration are infinite. The singular integral equations that we have studied extensively in this book are of the following type. In these equations f (x) is a given function and g(y) is the unknown function. 1. The Abel equation x x) = l g (y) d 0
Download or read book Fractional Integrals and Potentials written by Boris Rubin and published by CRC Press. This book was released on 1996-06-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents recent developments in the fractional calculus of functions of one and several real variables, and shows the relation of this field to a variety of areas in pure and applied mathematics. Beyond some basic properties of fractional integrals in one and many dimensions, it contains a mathematical theory of certain important weakly singular integral equations of the first kind arising in mechanics, diffraction theory and other areas of mathematical physics. The author focuses on explicit inversion formulae that can be obtained by making use of the classical Marchaudís approach and its generalization, leading to wavelet type representations.
Download or read book Multiscale Nonlinear and Adaptive Approximation written by Ronald DeVore and published by Springer Science & Business Media. This book was released on 2009-09-16 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book of invited articles offers a collection of high-quality papers in selected and highly topical areas of Applied and Numerical Mathematics and Approximation Theory which have some connection to Wolfgang Dahmen's scientific work. On the occasion of his 60th birthday, leading experts have contributed survey and research papers in the areas of Nonlinear Approximation Theory, Numerical Analysis of Partial Differential and Integral Equations, Computer-Aided Geometric Design, and Learning Theory. The main focus and common theme of all the articles in this volume is the mathematics building the foundation for most efficient numerical algorithms for simulating complex phenomena.
Download or read book Wavelets written by John J. Benedetto and published by CRC Press. This book was released on 2021-07-28 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.
Download or read book Spherical Sampling written by Willi Freeden and published by Birkhäuser. This book was released on 2018-05-03 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents, in a consistent and unified overview, results and developments in the field of today ́s spherical sampling, particularly arising in mathematical geosciences. Although the book often refers to original contributions, the authors made them accessible to (graduate) students and scientists not only from mathematics but also from geosciences and geoengineering. Building a library of topics in spherical sampling theory it shows how advances in this theory lead to new discoveries in mathematical, geodetic, geophysical as well as other scientific branches like neuro-medicine. A must-to-read for everybody working in the area of spherical sampling.
Download or read book Multiscale Methods for Fredholm Integral Equations written by Zhongying Chen and published by Cambridge University Press. This book was released on 2015-07-16 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: The recent appearance of wavelets as a new computational tool in applied mathematics has given a new impetus to the field of numerical analysis of Fredholm integral equations. This book gives an account of the state of the art in the study of fast multiscale methods for solving these equations based on wavelets. The authors begin by introducing essential concepts and describing conventional numerical methods. They then develop fast algorithms and apply these to solving linear, nonlinear Fredholm integral equations of the second kind, ill-posed integral equations of the first kind and eigen-problems of compact integral operators. Theorems of functional analysis used throughout the book are summarised in the appendix. The book is an essential reference for practitioners wishing to use the new techniques. It may also be used as a text, with the first five chapters forming the basis of a one-semester course for advanced undergraduates or beginning graduates.
Download or read book Novel Methods for Solving Linear and Nonlinear Integral Equations written by Santanu Saha Ray and published by CRC Press. This book was released on 2018-12-07 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the numerical solution of integral equations based on approximation of functions and the authors apply wavelet approximation to the unknown function of integral equations. The book's goal is to categorize the selected methods and assess their accuracy and efficiency.
Download or read book Multiscale Wavelet Methods for Partial Differential Equations written by Wolfgang Dahmen and published by Elsevier. This book was released on 1997-08-13 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This latest volume in the Wavelets Analysis and Its Applications Series provides significant and up-to-date insights into recent developments in the field of wavelet constructions in connection with partial differential equations. Specialists in numerical applications and engineers in a variety of fields will find Multiscale Wavelet for Partial Differential Equations to be a valuable resource. - Covers important areas of computational mechanics such as elasticity and computational fluid dynamics - Includes a clear study of turbulence modeling - Contains recent research on multiresolution analyses with operator-adapted wavelet discretizations - Presents well-documented numerical experiments connected with the development of algorithms, useful in specific applications
Download or read book Fuzzy Sets and Operations Research written by Bing-Yuan Cao and published by Springer. This book was released on 2019-03-18 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest advances in applying fuzzy sets and operations research technology and methods. It is the first fuzzy mathematics textbook for students in high school and technical secondary schools. Part of Springer’s book series: Advances in Intelligent and Soft Computing, it includes the 36 best papers from the Ninth International Conference on Fuzzy Information and Engineering (ICFIE2017), organized by the Fuzzy Information and Engineering Branch of Operations Research Society of China and Operations Research Society of Guangdong Province in China. Every paper has been carefully peer-reviewed by leading experts. The areas covered include 1. Fuzzy Measure and Integral; 2. Fuzzy Topology and Algebras; 3. Classification and Recognition; 4. Control and Fuzziness; 5. Extension of Fuzzy Set and System; 6. Operations Research and Management (OR); The book is suitable for college, masters and doctoral students; educators in universities, colleges, middle and primary schools teaching mathematics, fuzzy sets and systems, operations research, information and engineering, as well as management, control. Discussing case applications, it is also a valuable reference resource for professionals interested in theoretical and practical research.
Download or read book Advanced Finite Element Methods with Applications written by Thomas Apel and published by Springer. This book was released on 2019-06-28 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite element methods are the most popular methods for solving partial differential equations numerically, and despite having a history of more than 50 years, there is still active research on their analysis, application and extension. This book features overview papers and original research articles from participants of the 30th Chemnitz Finite Element Symposium, which itself has a 40-year history. Covering topics including numerical methods for equations with fractional partial derivatives; isogeometric analysis and other novel discretization methods, like space-time finite elements and boundary elements; analysis of a posteriori error estimates and adaptive methods; enhancement of efficient solvers of the resulting systems of equations, discretization methods for partial differential equations on surfaces; and methods adapted to applications in solid and fluid mechanics, it offers readers insights into the latest results.
Download or read book Constructive Approximation on the Sphere with Applications to Geomathematics written by W. Freeden and published by . This book was released on 1998 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geomathematics offers an useful means of assimilating and assessing the ever increasing flow of data from geoscientific and satellite sources, as well as an objective basis for the interpretation, classification, and solution of problems. This volume provides the necessary foundation in sphere oriented mathematics for graduate students and researchers interested in any of the diverse topics of constructive approximation in this area. Aspects of approximation by spherical harmonics, such as spherical splines and wavelets, are discussed in detail, and methods for handling different types of data, such as scalar, vectorial, and tensorial, are each considered in turn. This book presents the most up-to-date structures and methods for the efficient handling of sophisticated measurements and observations, thus reducing time and costs.
Download or read book Nonlinear Systems written by and published by BoD – Books on Demand. This book was released on 2020-05-13 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: The editors of this book have incorporated contributions from a diverse group of leading researchers in the field of nonlinear systems. To enrich the scope of the content, this book contains a valuable selection of works on fractional differential equations.The book aims to provide an overview of the current knowledge on nonlinear systems and some aspects of fractional calculus. The main subject areas are divided into two theoretical and applied sections. Nonlinear systems are useful for researchers in mathematics, applied mathematics, and physics, as well as graduate students who are studying these systems with reference to their theory and application. This book is also an ideal complement to the specific literature on engineering, biology, health science, and other applied science areas. The opportunity given by IntechOpen to offer this book under the open access system contributes to disseminating the field of nonlinear systems to a wide range of researchers.
Download or read book The Numerical Solution of Integral Equations of the Second Kind written by Kendall E. Atkinson and published by Cambridge University Press. This book was released on 1997-06-28 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Download or read book Handbook of Splines written by Gheorghe Micula and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to give a comprehensive introduction to the theory of spline functions, together with some applications to various fields, emphasizing the significance of the relationship between the general theory and its applications. At the same time, the goal of the book is also to provide new ma terial on spline function theory, as well as a fresh look at old results, being written for people interested in research, as well as for those who are interested in applications. The theory of spline functions and their applications is a relatively recent field of applied mathematics. In the last 50 years, spline function theory has undergone a won derful development with many new directions appearing during this time. This book has its origins in the wish to adequately describe this development from the notion of 'spline' introduced by 1. J. Schoenberg (1901-1990) in 1946, to the newest recent theories of 'spline wavelets' or 'spline fractals'. Isolated facts about the functions now called 'splines' can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J.
Download or read book Mathematical Reviews written by and published by . This book was released on 2008 with total page 836 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Haar Wavelets written by Ülo Lepik and published by Springer Science & Business Media. This book was released on 2014-01-09 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.