Download or read book An Introduction to Wavelet Analysis written by David F. Walnut and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive presentation of the conceptual basis of wavelet analysis, including the construction and analysis of wavelet bases. It motivates the central ideas of wavelet theory by offering a detailed exposition of the Haar series, then shows how a more abstract approach allows readers to generalize and improve upon the Haar series. It then presents a number of variations and extensions of Haar construction.
Download or read book Wavelet Analysis with Applications to Image Processing written by Lakshman Prasad and published by CRC Press. This book was released on 2020-01-29 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wavelet analysis is among the newest additions to the arsenals of mathematicians, scientists, and engineers, and offers common solutions to diverse problems. However, students and professionals in some areas of engineering and science, intimidated by the mathematical background necessary to explore this subject, have been unable to use this powerful tool. The first book on the topic for readers with minimal mathematical backgrounds, Wavelet Analysis with Applications to Image Processing provides a thorough introduction to wavelets with applications in image processing. Unlike most other works on this subject, which are often collections of papers or research advances, this book offers students and researchers without an extensive math background a step-by-step introduction to the power of wavelet transforms and applications to image processing. The first four chapters introduce the basic topics of analysis that are vital to understanding the mathematics of wavelet transforms. Subsequent chapters build on the information presented earlier to cover the major themes of wavelet analysis and its applications to image processing. This is an ideal introduction to the subject for students, and a valuable reference guide for professionals working in image processing.
Download or read book Wavelet Analysis written by Howard L. Resnikoff and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text gives a clear introduction to the ideas and methods of wavelet analysis, making concepts understandable by relating them to methods in mathematics and engineering. It shows how to apply wavelet analysis to digital signal processing and presents a wide variety of applications.
Download or read book An Introduction to Wavelets written by Charles K. Chui and published by Elsevier. This book was released on 2016-06-03 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wavelet Analysis and its Applications, Volume 1: An Introduction to Wavelets provides an introductory treatise on wavelet analysis with an emphasis on spline-wavelets and time-frequency analysis. This book is divided into seven chapters. Chapter 1 presents a brief overview of the subject, including classification of wavelets, integral wavelet transform for time-frequency analysis, multi-resolution analysis highlighting the important properties of splines, and wavelet algorithms for decomposition and reconstruction of functions. The preliminary material on Fourier analysis and signal theory is covered in Chapters 2 and 3. Chapter 4 covers the introductory study of cardinal splines, while Chapter 5 describes a general approach to the analysis and construction of scaling functions and wavelets. Spline-wavelets are deliberated in Chapter 6. The last chapter is devoted to an investigation of orthogonal wavelets and wavelet packets. This volume serves as a textbook for an introductory one-semester course on "wavelet analysis for upper-division undergraduate or beginning graduate mathematics and engineering students.
Download or read book Adapted Wavelet Analysis written by Mladen Victor Wickerhauser and published by CRC Press. This book was released on 1996-04-17 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: This detail-oriented text is intended for engineers and applied mathematicians who must write computer programs to perform wavelet and related analysis on real data. It contains an overview of mathematical prerequisites and proceeds to describe hands-on programming techniques to implement special programs for signal analysis and other applications.
Download or read book Wavelet Methods for Time Series Analysis written by Donald B. Percival and published by Cambridge University Press. This book was released on 2006-02-27 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to wavelet analysis 'from the ground level and up', and to wavelet-based statistical analysis of time series focuses on practical discrete time techniques, with detailed descriptions of the theory and algorithms needed to understand and implement the discrete wavelet transforms. Numerous examples illustrate the techniques on actual time series. The many embedded exercises - with complete solutions provided in the Appendix - allow readers to use the book for self-guided study. Additional exercises can be used in a classroom setting. A Web site offers access to the time series and wavelets used in the book, as well as information on accessing software in S-Plus and other languages. Students and researchers wishing to use wavelet methods to analyze time series will find this book essential.
Download or read book Applied Wavelet Analysis with S PLUS written by Andrew Bruce and published by Springer. This book was released on 1996-06-20 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using a visual data analysis approach, wavelet concepts are explained in a way that is intuitive and easy to understand. Furthermore, in addition to wavelets, a whole range of related signal processing techniques such as wavelet packets, local cosine analysis, and matching pursuits are covered, and applications of wavelet analysis are illustrated -including nonparametric function estimation, digital image compression, and time-frequency signal analysis. This book and software package is intended for a broad range of data analysts, scientists, and engineers. While most textbooks on the subject presuppose advanced training in mathematics, this book merely requires that readers be familiar with calculus and linear algebra at the undergraduate level.
Download or read book Abstract Harmonic Analysis of Continuous Wavelet Transforms written by Hartmut Führ and published by Springer. This book was released on 2005-01-17 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a systematic discussion of wavelet-type inversion formulae based on group representations, and their close connection to the Plancherel formula for locally compact groups. The connection is demonstrated by the discussion of a toy example, and then employed for two purposes: Mathematically, it serves as a powerful tool, yielding existence results and criteria for inversion formulae which generalize many of the known results. Moreover, the connection provides the starting point for a – reasonably self-contained – exposition of Plancherel theory. Therefore, the volume can also be read as a problem-driven introduction to the Plancherel formula.
Download or read book Data Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Download or read book Wavelet Transforms and Their Applications written by Lokenath Debnath and published by Springer Science & Business Media. This book was released on 2011-06-28 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overview Historically, the concept of "ondelettes" or "wavelets" originated from the study of time-frequency signal analysis, wave propagation, and sampling theory. One of the main reasons for the discovery of wavelets and wavelet transforms is that the Fourier transform analysis does not contain the local information of signals. So the Fourier transform cannot be used for analyzing signals in a joint time and frequency domain. In 1982, Jean MorIet, in collaboration with a group of French engineers, first introduced the idea of wavelets as a family of functions constructed by using translation and dilation of a single function, called the mother wavelet, for the analysis of nonstationary signals. However, this new concept can be viewed as the synthesis of various ideas originating from different disciplines including mathematics (Calder6n-Zygmund operators and Littlewood-Paley theory), physics (coherent states in quantum mechanics and the renormalization group), and engineering (quadratic mirror filters, sideband coding in signal processing, and pyramidal algorithms in image processing). Wavelet analysis is an exciting new method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, image processing, pattern recognition, computer graphics, the detection of aircraft and submarines, and improvement in CAT scans and other medical image technology. Wavelets allow complex information such as music, speech, images, and patterns to be decomposed into elementary forms, called the fundamental building blocks, at different positions and scales and subsequently reconstructed with high precision.
Download or read book A First Course in Wavelets with Fourier Analysis written by Albert Boggess and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, self-contained treatment of Fourier analysis and wavelets—now in a new edition Through expansive coverage and easy-to-follow explanations, A First Course in Wavelets with Fourier Analysis, Second Edition provides a self-contained mathematical treatment of Fourier analysis and wavelets, while uniquely presenting signal analysis applications and problems. Essential and fundamental ideas are presented in an effort to make the book accessible to a broad audience, and, in addition, their applications to signal processing are kept at an elementary level. The book begins with an introduction to vector spaces, inner product spaces, and other preliminary topics in analysis. Subsequent chapters feature: The development of a Fourier series, Fourier transform, and discrete Fourier analysis Improved sections devoted to continuous wavelets and two-dimensional wavelets The analysis of Haar, Shannon, and linear spline wavelets The general theory of multi-resolution analysis Updated MATLAB code and expanded applications to signal processing The construction, smoothness, and computation of Daubechies' wavelets Advanced topics such as wavelets in higher dimensions, decomposition and reconstruction, and wavelet transform Applications to signal processing are provided throughout the book, most involving the filtering and compression of signals from audio or video. Some of these applications are presented first in the context of Fourier analysis and are later explored in the chapters on wavelets. New exercises introduce additional applications, and complete proofs accompany the discussion of each presented theory. Extensive appendices outline more advanced proofs and partial solutions to exercises as well as updated MATLAB routines that supplement the presented examples. A First Course in Wavelets with Fourier Analysis, Second Edition is an excellent book for courses in mathematics and engineering at the upper-undergraduate and graduate levels. It is also a valuable resource for mathematicians, signal processing engineers, and scientists who wish to learn about wavelet theory and Fourier analysis on an elementary level.
Download or read book Fourier and Wavelet Analysis written by George Bachmann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive volume develops all of the standard features of Fourier analysis - Fourier series, Fourier transform, Fourier sine and cosine transforms, and wavelets. The books approach emphasizes the role of the "selector" functions, and is not embedded in the usual engineering context, which makes the material more accessible to a wider audience. While there are several publications on the various individual topics, none combine or even include all of the above.
Download or read book Wavelets written by Charles K. Chui and published by SIAM. This book was released on 1997-01-01 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wavelets continue to be powerful mathematical tools that can be used to solve problems for which the Fourier (spectral) method does not perform well or cannot handle. This book is for engineers, applied mathematicians, and other scientists who want to learn about using wavelets to analyze, process, and synthesize images and signals. Applications are described in detail and there are step-by-step instructions about how to construct and apply wavelets. The only mathematically rigorous monograph written by a mathematician specifically for nonspecialists, it describes the basic concepts of these mathematical techniques, outlines the procedures for using them, compares the performance of various approaches, and provides information for problem solving, putting the reader at the forefront of current research.
Download or read book Wavelet Analysis and Applications written by Tao Qian and published by Springer Science & Business Media. This book was released on 2007-02-24 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reflects the latest developments in the area of wavelet analysis and its applications. Since the cornerstone lecture of Yves Meyer presented at the ICM 1990 in Kyoto, to some extent, wavelet analysis has often been said to be mainly an applied area. However, a significant percentage of contributions now are connected to theoretical mathematical areas, and the concept of wavelets continuously stretches across various disciplines of mathematics. Key topics: Approximation and Fourier Analysis Construction of Wavelets and Frame Theory Fractal and Multifractal Theory Wavelets in Numerical Analysis Time-Frequency Analysis Adaptive Representation of Nonlinear and Non-stationary Signals Applications, particularly in image processing Through the broad spectrum, ranging from pure and applied mathematics to real applications, the book will be most useful for researchers, engineers and developers alike.
Download or read book Wavelet Analysis on the Sphere written by Sabrine Arfaoui and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-03-20 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this monograph is to develop the theory of wavelet harmonic analysis on the sphere. By starting with orthogonal polynomials and functional Hilbert spaces on the sphere, the foundations are laid for the study of spherical harmonics such as zonal functions. The book also discusses the construction of wavelet bases using special functions, especially Bessel, Hermite, Tchebychev, and Gegenbauer polynomials.
Download or read book Wavelets written by Peter Nickolas and published by Cambridge University Press. This book was released on 2017-01-11 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text offers an excellent introduction to the mathematical theory of wavelets for senior undergraduate students. Despite the fact that this theory is intrinsically advanced, the author's elementary approach makes it accessible at the undergraduate level. Beginning with thorough accounts of inner product spaces and Hilbert spaces, the book then shifts its focus to wavelets specifically, starting with the Haar wavelet, broadening to wavelets in general, and culminating in the construction of the Daubechies wavelets. All of this is done using only elementary methods, bypassing the use of the Fourier integral transform. Arguments using the Fourier transform are introduced in the final chapter, and this less elementary approach is used to outline a second and quite different construction of the Daubechies wavelets. The main text of the book is supplemented by more than 200 exercises ranging in difficulty and complexity.
Download or read book An Introduction to Random Vibrations Spectral Wavelet Analysis written by D. E. Newland and published by Courier Corporation. This book was released on 2012-04-03 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic describes and illustrates basic theory, with a detailed explanation of discrete wavelet transforms. Suitable for upper-level undergraduates, it is also a practical resource for professionals.