EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Propagation of Sound in Porous Media

Download or read book Propagation of Sound in Porous Media written by J.F. Allard and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.

Book Wave Fields in Real Media

Download or read book Wave Fields in Real Media written by José M. Carcione and published by Elsevier. This book was released on 2014-12-08 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil

Book Computational and Experimental Studies of Acoustic Waves

Download or read book Computational and Experimental Studies of Acoustic Waves written by Mahmut Reyhanoglu and published by BoD – Books on Demand. This book was released on 2018-01-04 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents recent studies of acoustic wave propagation through different media including the atmosphere, Earth's subsurface, complex dusty plasmas, porous materials, and flexible structures. Mathematical models of the underlying physical phenomena are introduced and studied in detail. With its seven chapters, the book brings together important contributions from renowned international researchers to provide an excellent survey of recent computational and experimental studies of acoustic waves. The first section consists of four chapters that focus on computational studies, while the next section is composed of three chapters that center on experimental studies.

Book Acoustics of Porous Media

Download or read book Acoustics of Porous Media written by Thierry Bourbié and published by Editions TECHNIP. This book was released on 1987 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Poromechanics

Download or read book Poromechanics written by J.F. Thimus and published by CRC Press. This book was released on 2020-12-18 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text features 105 papers dealing with the fundamentals and the applications of poromechanics from the Biot conference of 1998, held in Louvain-la-Neuve. Topics include: wave propogation; numerical modelling; identification of poromechanical parameters; and constitutive modelling.

Book Wave Propagation in Viscoelastic and Poroelastic Continua

Download or read book Wave Propagation in Viscoelastic and Poroelastic Continua written by Martin Schanz and published by Springer Science & Business Media. This book was released on 2012-11-27 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave propagation is an important topic in engineering sciences, especially, in the field of solid mechanics. A description of wave propagation phenomena is given by Graff [98]: The effect of a sharply applied, localized disturbance in a medium soon transmits or 'spreads' to other parts of the medium. These effects are familiar to everyone, e.g., transmission of sound in air, the spreading of ripples on a pond of water, or the transmission of radio waves. From all wave types in nature, here, attention is focused only on waves in solids. Thus, solely mechanical disturbances in contrast to electro-magnetic or acoustic disturbances are considered. of waves - the compression wave similar to the In solids, there are two types pressure wave in fluids and, additionally, the shear wave. Due to continual reflec tions at boundaries and propagation of waves in bounded solids after some time a steady state is reached. Depending on the influence of the inertia terms, this state is governed by a static or dynamic equilibrium in frequency domain. However, if the rate of onset of the load is high compared to the time needed to reach this steady state, wave propagation phenomena have to be considered.

Book Poromechanics II

Download or read book Poromechanics II written by J.L. Auriault and published by CRC Press. This book was released on 2020-12-17 with total page 972 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings deal with the fundamentals and applications of poromechanics to geomechanics, material sciences, geophysics, acoustics and biomechanics. They discuss the state of the art in such topics as constitutive modelling and upscaling methods.

Book Electromagnetic Wave Propagation  Radiation  and Scattering

Download or read book Electromagnetic Wave Propagation Radiation and Scattering written by Akira Ishimaru and published by John Wiley & Sons. This book was released on 2017-08-09 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.

Book The Rock Physics Handbook

Download or read book The Rock Physics Handbook written by Gary Mavko and published by Cambridge University Press. This book was released on 2020-01-09 with total page 741 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings together widely scattered theoretical and laboratory rock physics relations critical for modelling and interpretation of geophysical data.

Book Wave Propagation in Solid and Porous Half Space Media

Download or read book Wave Propagation in Solid and Porous Half Space Media written by Hamid R. Hamidzadeh and published by Springer Science & Business. This book was released on 2014-04-26 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers advanced topics in dynamic modeling of soil-foundation interaction, as well as the response of elastic semi-infinite media from an applications viewpoint. Advanced concepts such as solutions for analysis of elastic semi-infinite mediums, fluid motion in porous media, and nonlinearities in dynamic behavior are explained in great detail. Related theories and numerical analysis for vertical vibration, and rocking vibration of a rigid rectangular mass-less plate, and horizontal vibration of a rigid mass-less plate are presented. Throughout the book, a strong emphasis is placed on applications, and a laboratory model for elastic half-space medium is provided.

Book Wave Propagation Analysis of Smart Nanostructures

Download or read book Wave Propagation Analysis of Smart Nanostructures written by FARZAD. DABBAGH EBRAHIMI (ALI.) and published by . This book was released on 2024-06-24 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave Propagation Analysis of Smart Nanostructures presents a mathematical framework for the wave propagation problem of small-scale nanobeams and nanoplates manufactured from various materials, including functionally graded composites, smart piezoelectric materials, smart magneto-electro-elastic materials, smart magnetostrictive materials, and porous materials. In this book, both classical and refined higher-order shear deformation beam and plate hypotheses are employed to formulate the wave propagation problem using the well-known Hamilton� �s principle. Additionally, the influences of small-scale nanobeams on the mechanical behaviors of nanostructures are covered using both nonlocal elasticity and nonlocal strain gradient elasticity theories. Impacts of various terms, such as elastic springs of elastic foundation, damping coefficient of viscoelastic substrate, different types of temperature change, applied electric voltage and magnetic potential, and intensity of an external magnetic field on the dispersion curves of nanostructures, are included in the framework of numerous examples.

Book An Introduction to Seismology  Earthquakes  and Earth Structure

Download or read book An Introduction to Seismology Earthquakes and Earth Structure written by Seth Stein and published by John Wiley & Sons. This book was released on 2009-04-01 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Seismology, Earthquakes and Earth Structures is an introduction to seismology and its role in the earth sciences, and is written for advanced undergraduate and beginning graduate students. The fundamentals of seismic wave propagation are developed using a physical approach and then applied to show how refraction, reflection, and teleseismic techniques are used to study the structure and thus the composition and evolution of the earth. The book shows how seismic waves are used to study earthquakes and are integrated with other data to investigate the plate tectonic processes that cause earthquakes. Figures, examples, problems, and computer exercises teach students about seismology in a creative and intuitive manner. Necessary mathematical tools including vector and tensor analysis, matrix algebra, Fourier analysis, statistics of errors, signal processing, and data inversion are introduced with many relevant examples. The text also addresses the fundamentals of seismometry and applications of seismology to societal issues. Special attention is paid to help students visualize connections between different topics and view seismology as an integrated science. An Introduction to Seismology, Earthquakes, and Earth Structure gives an excellent overview for students of geophysics and tectonics, and provides a strong foundation for further studies in seismology. Multidisciplinary examples throughout the text - catering to students in varied disciplines (geology, mineralogy, petrology, physics, etc.). Most up to date book on the market - includes recent seismic events such as the 1999 Earthquakes in Turkey, Greece, and Taiwan). Chapter outlines - each chapter begins with an outline and a list of learning objectives to help students focus and study. Essential math review - an entire section reviews the essential math needed to understand seismology. This can be covered in class or left to students to review as needed. End of chapter problem sets - homework problems that cover the material presented in the chapter. Solutions to all odd numbered problem sets are listed in the back so that students can track their progress. Extensive References - classic references and more current references are listed at the end of each chapter. A set of instructor's resources containing downloadable versions of all the figures in the book, errata and answers to homework problems is available at: http://levee.wustl.edu/seismology/book/. Also available on this website are PowerPoint lecture slides corresponding to the first 5 chapters of the book.

Book Fundamentals of Shock Wave Propagation in Solids

Download or read book Fundamentals of Shock Wave Propagation in Solids written by Lee Davison and published by Springer Science & Business Media. This book was released on 2008-04-24 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: My intent in writing this book is to present an introduction to the thermo- chanical theory required to conduct research and pursue applications of shock physics in solid materials. Emphasis is on the range of moderate compression that can be produced by high-velocity impact or detonation of chemical exp- sives and in which elastoplastic responses are observed and simple equations of state are applicable. In the interest of simplicity, the presentation is restricted to plane waves producing uniaxial deformation. Although applications often - volve complex multidimensional deformation fields it is necessary to begin with the simpler case. This is also the most important case because it is the usual setting of experimental research. The presentation is also restricted to theories of material response that are simple enough to permit illustrative problems to be solved with minimal recourse to numerical analysis. The discussions are set in the context of established continuum-mechanical principles. I have endeavored to define the quantities encountered with some care and to provide equations in several convenient forms and in a way that lends itself to easy reference. Thermodynamic analysis plays an important role in continuum mechanics, and I have included a presentation of aspects of this subject that are particularly relevant to shock physics. The notation adopted is that conventional in expositions of modern continuum mechanics, insofar as possible, and variables are explained as they are encountered. Those experienced in shock physics may find some of the notation unconventional.

Book Waves with Power Law Attenuation

Download or read book Waves with Power Law Attenuation written by Sverre Holm and published by Springer. This book was released on 2019-04-15 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates concepts from physical acoustics with those from linear viscoelasticity and fractional linear viscoelasticity. Compressional waves and shear waves in applications such as medical ultrasound, elastography, and sediment acoustics often follow power law attenuation and dispersion laws that cannot be described with classical viscous and relaxation models. This is accompanied by temporal power laws rather than the temporal exponential responses of classical models. The book starts by reformulating the classical models of acoustics in terms of standard models from linear elasticity. Then, non-classical loss models that follow power laws and which are expressed via convolution models and fractional derivatives are covered in depth. In addition, parallels are drawn to electromagnetic waves in complex dielectric media. The book also contains historical vignettes and important side notes about the validity of central questions. While addressed primarily to physicists and engineers working in the field of acoustics, this expert monograph will also be of interest to mathematicians, mathematical physicists, and geophysicists.

Book Classics of Elastic Wave Theory

Download or read book Classics of Elastic Wave Theory written by Michael A. Pelissier and published by SEG Books. This book was released on 2007 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains 16 classic essays from the 17th to the 21st centuries on aspects of elastic wave theory.

Book Methods of the Physics of Porous Media

Download or read book Methods of the Physics of Porous Media written by and published by Academic Press. This book was released on 1999-07-09 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past 25 years, the field of VUV physics has undergone significant developments as new powerful spectroscopic tools, VUV lasers, and optical components have become available. This volume is aimed at experimentalists who are in need of choosing the best type of modern instrumentation in this applied field. In particular, it contains a detailed chapter on laboratory sources. This volume provides an up-to-date description of state-of-the-art equipment and techniques, and a broad reference bibliography. It treats phenomena from the standpoint of an experimental physicist, whereby such topics as imaging techniques (NMR, X-ray, ultrasonic, etc.) computer modeling, eletro-kinetic phenomena, diffusion, non-linear wave propagation surface adsorption/desorption, convective mixing, and fracture are specifically addressed.

Book Springer Handbook of Acoustics

Download or read book Springer Handbook of Acoustics written by Thomas Rossing and published by Springer Science & Business Media. This book was released on 2007-06-21 with total page 1179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an unparalleled modern handbook reflecting the richly interdisciplinary nature of acoustics edited by an acknowledged master in the field. The handbook reviews the most important areas of the subject, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest research and applications are incorporated throughout, including computer recognition and synthesis of speech, physiological acoustics, diagnostic imaging and therapeutic applications and acoustical oceanography. An accompanying CD-ROM contains audio and video files.