EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Wave Propagation in Dispersive Anisotropic Media

Download or read book Wave Propagation in Dispersive Anisotropic Media written by Richard Salvatore Sorbello and published by . This book was released on 1965 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wave Propagation in Layered Anisotropic Media

Download or read book Wave Propagation in Layered Anisotropic Media written by A.H. Nayfeh and published by Elsevier. This book was released on 1995-09-27 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.

Book The Propagation of Disturbances in Dispersive Media

Download or read book The Propagation of Disturbances in Dispersive Media written by Sir Thomas Havelock and published by . This book was released on 1914 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present tract deals with the manner in which a limited initial disturbance spreads out into a dispersive medium and with allied problems - p. 1.

Book Methods of Wave Theory in Dispersive Media

Download or read book Methods of Wave Theory in Dispersive Media written by Mikhail Viktorovich Kuzelev and published by World Scientific. This book was released on 2010 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ch. 1. Linear harmonic waves in dispersive systems. Initial-value problem and problem with an external source. 1. Harmonic waves in dispersive systems. 2. Initial-value problem. Eigenmode method. 3. Characteristic function of the state vector. Dispersion operator. 4. Laplace transform method -- ch. 2. A case study of linear waves in dispersive media. 5. Transverse electromagnetic waves in an isotropic dielectric. 6. Longitudinal electrostatic waves in a cold isotropic plasma. Collisional dissipation of plasma waves. 7. Transverse electromagnetic waves in a cold isotropic plasma. Dissipation of transverse waves in a plasma. 8. Electromagnetic waves in metals. 9. Electromagnetic waves in a waveguide with an isotropic dielectric. 10. Longitudinal waves in a hot isotropic plasma. Electron diffusion in a plasma. 11. Longitudinal waves in an isotropic degenerate plasma. Waves in a quantum plasma. 12. Ion acoustic waves in a nonisothermal plasma. Ambipolar diffusion. 13. Electromagnetic waves in a waveguide with an anisotropic plasma in a strong external magnetic field. 14. Electromagnetic waves propagating in a magnetized electron plasma along a magnetic field. 15. Electrostatic waves propagating in a magnetized electron plasma at an angle to a magnetic field. 16. Magnetohydrodynamic waves in a conducting fluid. 17. Acoustic waves in crystals. 18. Longitudinal electrostatic waves in a one-dimensional electron beam. 19. Beam instability in a plasma. 20. Instability of a current-carrying plasma -- ch. 3. Linear waves in coupled media. Slow amplitude method. 21. Coupled oscillator representation and slow amplitude method. 22. Beam-plasma system in the coupled oscillator representation. 23. Basic equations of microwave electronics. 24. Resonant Buneman instability in a current-carrying plasma in the coupled oscillator representation. 25. Dispersion function and wave absorption in dissipative systems. 26. Some effects in the interaction between waves in coupled systems. 27. Waves and their interaction in periodic structures -- ch. 4. Nonharmonic waves in dispersive media. 28. General solution to the initial-value problem. 29. Quasi-harmonic approximation. Group velocity. 30. Pulse spreading in equilibrium dispersive media. 31. Stationary-phase method. 32. Some problems for wave equations with a source -- ch. 5. Nonharmonic waves in nonequilibrium media. 33. Pulse propagation in nonequilibrium media. 34. Stationary-phase method for complex frequencies. 35. Quasi-harmonic approximation in the theory of interaction of electron beams with slowing-down media -- ch. 6. Theory of instabilities. 36. Convective and absolute instabilities. First criterion for the type of instability. 37. Saddle-point method. Second criterion for the type of instability. 38. Third Criterion for the type of instability. 39. Type of beam instability in the interaction with a slowed wave of zero group velocity in a medium. 40. Calculation of the Green's functions of unstable systems -- ch. 7. Hamiltonian method in the theory of electromagnetic radiation in dispersive media. 41. Equations for the excitation of transverse electromagnetic field oscillators. 42. Dipole radiation. 43. Radiation from a moving dipole - undulator radiation. 44. Cyclotron radiation. 45. Cherenkov effect. Anomalous and normal doppler effects. 46. Application of the Hamiltonian method to the problem of the excitation of longitudinal waves

Book Wave Propagation and Radiation in Gyrotropic and Anisotropic Media

Download or read book Wave Propagation and Radiation in Gyrotropic and Anisotropic Media written by Abdullah Eroglu and published by Springer Science & Business Media. This book was released on 2010-09-02 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: As technology matures, communication system operation regions shift from mic- wave and millimeter ranges to sub-millimeter ranges. However, device perf- mance at very high frequencies suffers drastically from the material de?ciencies. As a result, engineers and scientists are relentlessly in search for the new types of materials, and composites which will meet the device performance requirements and not present any de?ciencies due to material electrical and magnetic properties. Anisotropic and gyrotropic materials are the class of the materials which are very important in the development high performance microwave devices and new types composite layered structures. As a result, it is a need to understand the wave propagation and radiation characteristics of these materials to be able to realize them in practice. This book is intended to provide engineers and scientists the required skill set to design high frequency devices using anisotropic, and gyrotropic materials by providing them the theoretical background which is blended with the real world engineering application examples. It is the author’s hope that this book will help to ?ll the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using new types of materials. Each chapter in the book is designed to give the theory ?rst on the subject and solidify it with application examples given in the last chapter. The application examples for the radiation problems are given at the end of Chap. 5 and Chap. 6 for anisotropic and gyrotropic materials, respectively, after the theory section.

Book Wave Propagation and Group Velocity

Download or read book Wave Propagation and Group Velocity written by Léon Brillouin and published by Academic Press. This book was released on 2013-10-22 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter dealing with guided waves, and many other cases of application of these definitions are quoted. These problems have come again into the foreground, in connection with the propagation of radio signals and radar. Reflection in the Heaviside layers requires a real knowledge of all these different definitions. Group velocity also plays a very important role in wave mechanics and corresponds to the speed of a particle. The present book should be very useful to physicists and radio engineers and should give them a good basis for new discussions and applications.

Book Wave Fields in Real Media

Download or read book Wave Fields in Real Media written by José M. Carcione and published by Elsevier. This book was released on 2014-12-08 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful. New to this edition: This new edition presents the fundamentals of wave propagation in Anisotropic, Anelastic, Porous Media while also incorporating the latest research from the past 7 years, including that of the author. The author presents all the equations and concepts necessary to understand the physics of wave propagation. These equations form the basis for modeling and inversion of seismic and electromagnetic data. Additionally, demonstrations are given, so the book can be used to teach post-graduate courses. Addition of new and revised content is approximately 30%. Examines the fundamentals of wave propagation in anisotropic, anelastic and porous media Presents all equations and concepts necessary to understand the physics of wave propagation, with examples Emphasizes geophysics, particularly, seismic exploration for hydrocarbon reservoirs, which is essential for exploration and production of oil

Book Ultrasonic Guided Waves in Solid Media

Download or read book Ultrasonic Guided Waves in Solid Media written by Joseph L. Rose and published by Cambridge University Press. This book was released on 2014-08-11 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ultrasonic guided waves in solid media have become a critically important subject in nondestructive testing and structural health monitoring, as new faster, more sensitive, and more economical ways of looking at materials and structures have become possible. This book will lead to fresh creative ideas for use in new inspection procedures. Although the mathematics is sometimes sophisticated, the book can also be read by managers without detailed understanding of the concepts as it can be read from a 'black box' point of view. Overall, the material presented on wave mechanics - in particular, guided wave mechanics - establishes a framework for the creative data collection and signal processing needed to solve many problems using ultrasonic nondestructive evaluation and structural health monitoring. The book can be used as a reference in ultrasonic nondestructive evaluation by professionals and as a textbook for seniors and graduate students. This work extends the coverage of Rose's earlier book Ultrasonic Waves in Solid Media.

Book Wave Propagation in Dispersive Web Media

Download or read book Wave Propagation in Dispersive Web Media written by Suefen Chen and published by . This book was released on 1992 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wave Propagation in General Anisotropic Media

Download or read book Wave Propagation in General Anisotropic Media written by Habib Taouk and published by . This book was released on 1986 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Phase space Analysis of Wave Propagation in Dispersive Media

Download or read book Phase space Analysis of Wave Propagation in Dispersive Media written by Anastasios Ioannis Tsolakis and published by . This book was released on 1980 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wave Propagation in a Dispersive Medium

Download or read book Wave Propagation in a Dispersive Medium written by Paul R. McIsaac and published by . This book was released on 1966 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The report examines the consequences of temperal and spatial dispersion for the power flow and boundary conditions for electromagnetic wave propagation in dispersive media. The theory is applied to propagation in electron streams and in ferrites. (Author).

Book Elastic Wave Propagation in Anistropic Media

Download or read book Elastic Wave Propagation in Anistropic Media written by Juergen H. Staudte and published by . This book was released on 1967 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Wave Fields in Real Media

Download or read book Wave Fields in Real Media written by José M. Carcione and published by Elsevier. This book was released on 2001-10-15 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the differences between an ideal and a real description of wave propagation, where ideal means an elastic (lossless), isotropic and single-phase medium, and real means an anelastic, anisotropic and multi-phase medium. The analysis starts by introducing the relevant stress-strain relation. This relation and the equations of momentum conservation are combined to give the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. The book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and solids - may also find this text useful.