EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Handbook of Wafer Bonding

Download or read book Handbook of Wafer Bonding written by Peter Ramm and published by John Wiley & Sons. This book was released on 2012-02-13 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus behind this book on wafer bonding is the fast paced changes in the research and development in three-dimensional (3D) integration, temporary bonding and micro-electro-mechanical systems (MEMS) with new functional layers. Written by authors and edited by a team from microsystems companies and industry-near research organizations, this handbook and reference presents dependable, first-hand information on bonding technologies. Part I sorts the wafer bonding technologies into four categories: Adhesive and Anodic Bonding; Direct Wafer Bonding; Metal Bonding; and Hybrid Metal/Dielectric Bonding. Part II summarizes the key wafer bonding applications developed recently, that is, 3D integration, MEMS, and temporary bonding, to give readers a taste of the significant applications of wafer bonding technologies. This book is aimed at materials scientists, semiconductor physicists, the semiconductor industry, IT engineers, electrical engineers, and libraries.

Book Wafer Bonding for Three Dimensional  3D  Integration

Download or read book Wafer Bonding for Three Dimensional 3D Integration written by Yongchai Kwon and published by . This book was released on 2003 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book 3D Integration for VLSI Systems

Download or read book 3D Integration for VLSI Systems written by Chuan Seng Tan and published by CRC Press. This book was released on 2016-04-19 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-dimensional (3D) integration is identified as a possible avenue for continuous performance growth in integrated circuits (IC) as the conventional scaling approach is faced with unprecedented challenges in fundamental and economic limits. Wafer level 3D IC can take several forms, and they usually include a stack of several thinned IC layers th

Book Wafer Level 3 D ICs Process Technology

Download or read book Wafer Level 3 D ICs Process Technology written by Chuan Seng Tan and published by Springer Science & Business Media. This book was released on 2009-06-29 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

Book Copper Wafer Bonding in Three dimensional Integration

Download or read book Copper Wafer Bonding in Three dimensional Integration written by Kuan-Neng Chen and published by . This book was released on 2005 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-dimensional (3D) integration, in which multiple layers of devices are stacked with high density of interconnects between the layers, offers solutions for problems when the critical dimensions in integrated circuits keep shrinking. Copper wafer bonding has been considered as a strong candidate for fabrication of three-dimensional integrated circuits (3-D IC). This thesis work involves fundamental studies of copper wafer bonding and bonding performance of bonded interconnects. Copper bonded wafers exhibit good bonding qualities and present no original bonding interfaces when the bonding process occurs at 400°C/4000 mbar for 30 min, followed by nitrogen anneal at 400°C for 30 min. Oxide distribution in the bonded layer is uniform and sparse. Evolution of microstructure morphologies and grain orientations of copper bonded wafers during bonding and annealing were studied. The bonded layer reaches steady state after post-bonding anneal. The microstructure morphologies and bond strengths of copper bonded wafers under different bonding conditions were investigated. A map summarizing these results provides a useful reference on process conditions suitable for three-dimensional integration based on copper wafer bonding. Similar microstructure morphology of copper bonded interconnects was observed to that of copper bonded wafers. Specific contact resistances of bonded interconnects of approximately 10−8 [ohms]-cm2 were measured by using a novel test structure which can eliminate the errors from misalignment during bonding. The bonding qualities of different interconnect sizes and densities have been investigated. In addition to increasing the bonding temperature and duration, options such as larger interconnect sizes, total bonding area, or use of dummy pads for bonding in the unused area improve the quality of bonded interconnects. Process development of silicon layer stacking based on Cu wafer bonding was successfully applied to demonstrate a strong four-layer-stack structure. Bonded Cu layers in this structure become homogeneous layers and do not show original bonding interfaces. This process can be reliably applied in three-dimensional integration applications.

Book Handbook of 3D Integration  Volume 1

Download or read book Handbook of 3D Integration Volume 1 written by Philip Garrou and published by John Wiley & Sons. This book was released on 2011-09-22 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first encompassing treatise of this new, but very important field puts the known physical limitations for classic 2D electronics into perspective with the requirements for further electronics developments and market necessities. This two-volume handbook presents 3D solutions to the feature density problem, addressing all important issues, such as wafer processing, die bonding, packaging technology, and thermal aspects. It begins with an introductory part, which defines necessary goals, existing issues and relates 3D integration to the semiconductor roadmap of the industry. Before going on to cover processing technology and 3D structure fabrication strategies in detail. This is followed by fields of application and a look at the future of 3D integration. The contributions come from key players in the field, from both academia and industry, including such companies as Lincoln Labs, Fraunhofer, RPI, ASET, IMEC, CEA-LETI, IBM, and Renesas.

Book 3D and Circuit Integration of MEMS

Download or read book 3D and Circuit Integration of MEMS written by Masayoshi Esashi and published by John Wiley & Sons. This book was released on 2021-03-16 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore heterogeneous circuit integration and the packaging needed for practical applications of microsystems MEMS and system integration are important building blocks for the “More-Than-Moore” paradigm described in the International Technology Roadmap for Semiconductors. And, in 3D and Circuit Integration of MEMS, distinguished editor Dr. Masayoshi Esashi delivers a comprehensive and systematic exploration of the technologies for microsystem packaging and heterogeneous integration. The book focuses on the silicon MEMS that have been used extensively and the technologies surrounding system integration. You’ll learn about topics as varied as bulk micromachining, surface micromachining, CMOS-MEMS, wafer interconnection, wafer bonding, and sealing. Highly relevant for researchers involved in microsystem technologies, the book is also ideal for anyone working in the microsystems industry. It demonstrates the key technologies that will assist researchers and professionals deal with current and future application bottlenecks. Readers will also benefit from the inclusion of: A thorough introduction to enhanced bulk micromachining on MIS process, including pressure sensor fabrication and the extension of MIS process for various advanced MEMS devices An exploration of epitaxial poly Si surface micromachining, including process condition of epi-poly Si, and MEMS devices using epi-poly Si Practical discussions of Poly SiGe surface micromachining, including SiGe deposition and LP CVD polycrystalline SiGe A concise treatment of heterogeneously integrated aluminum nitride MEMS resonators and filters Perfect for materials scientists, electronics engineers, and electrical and mechanical engineers, 3D and Circuit Integration of MEMS will also earn a place in the libraries of semiconductor physicists seeking a one-stop reference for circuit integration and the practical application of microsystems.

Book Three Dimensional Integration of Semiconductors

Download or read book Three Dimensional Integration of Semiconductors written by Kazuo Kondo and published by Springer. This book was released on 2015-12-09 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book starts with background concerning three-dimensional integration - including their low energy consumption and high speed image processing - and then proceeds to how to construct them and which materials to use in particular situations. The book covers numerous applications, including next generation smart phones, driving assistance systems, capsule endoscopes, homing missiles, and many others. The book concludes with recent progress and developments in three dimensional packaging, as well as future prospects.

Book 3D Integration in VLSI Circuits

Download or read book 3D Integration in VLSI Circuits written by Katsuyuki Sakuma and published by CRC Press. This book was released on 2018-04-17 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, the term 3D integration includes a wide variety of different integration methods, such as 2.5-dimensional (2.5D) interposer-based integration, 3D integrated circuits (3D ICs), 3D systems-in-package (SiP), 3D heterogeneous integration, and monolithic 3D ICs. The goal of this book is to provide readers with an understanding of the latest challenges and issues in 3D integration. TSVs are not the only technology element needed for 3D integration. There are numerous other key enabling technologies required for 3D integration, and the speed of the development in this emerging field is very rapid. To provide readers with state-of-the-art information on 3D integration research and technology developments, each chapter has been contributed by some of the world’s leading scientists and experts from academia, research institutes, and industry from around the globe. Covers chip/wafer level 3D integration technology, memory stacking, reconfigurable 3D, and monolithic 3D IC. Discusses the use of silicon interposer and organic interposer. Presents architecture, design, and technology implementations for 3D FPGA integration. Describes oxide bonding, Cu/SiO2 hybrid bonding, adhesive bonding, and solder bonding. Addresses the issue of thermal dissipation in 3D integration.

Book Handbook of 3D Integration  Volume 3

Download or read book Handbook of 3D Integration Volume 3 written by Philip Garrou and published by John Wiley & Sons. This book was released on 2014-04-22 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology. As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading for materials scientists, semiconductor physicists, and those working in the semiconductor industry, as well as IT and electrical engineers.

Book Wafer Bonding

    Book Details:
  • Author : Marin Alexe
  • Publisher : Springer Science & Business Media
  • Release : 2004-05-14
  • ISBN : 9783540210498
  • Pages : 524 pages

Download or read book Wafer Bonding written by Marin Alexe and published by Springer Science & Business Media. This book was released on 2004-05-14 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past decade direct wafer bonding has developed into a mature materials integration technology. This book presents state-of-the-art reviews of the most important applications of wafer bonding written by experts from industry and academia. The topics include bonding-based fabrication methods of silicon-on-insulator, photonic crystals, VCSELs, SiGe-based FETs, MEMS together with hybrid integration and laser lift-off. The non-specialist will learn about the basics of wafer bonding and its various application areas, while the researcher in the field will find up-to-date information about this fast-moving area, including relevant patent information.

Book 2016 IEEE 66th Electronic Components and Technology Conference  ECTC

Download or read book 2016 IEEE 66th Electronic Components and Technology Conference ECTC written by IEEE Staff and published by . This book was released on 2016-05-31 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: premier components, packaging and technology conference

Book Three Dimensional Integration Technology Using Copper Wafer Bonding

Download or read book Three Dimensional Integration Technology Using Copper Wafer Bonding written by Andy Fan and published by . This book was released on 2006 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.,) Next, nominal feasibility of the 3-D flow was demonstrated by fabricating a 21-stage and 43-stage CMOS ring oscillators, where each single CMOS inverter / buffer stage was constructed by connecting NMOS-only devices from one substrate with PMOS-only devices from a separate substrate. Proof-of-concept was accomplished when all 92 Cu-Cu bonds, 204 thru-SOI Cu damascene vias, and 56 pairs of MOSFETs communicated simultaneously to produce a 2.75 MHz (43-stage) and 5.5 MHz (21-stage) oscillators, ringing rail-to-rail at 5 V Vdd under proper Vt adjustments on the SOI-PMOS using integrated backgates. Furthermore, to combat the perceived heat dissipation problem in 3-D, this work focused on using the Cu-Cu interlayer bond as heat dissipators, with Cu planes working as flux spreaders and Cu vias as direct heat conduits. Finally, 3-D RF passive integration onto existing chips can be made feasible, under certain device performance trade-offs, by using cobalt magnetic shielding, which offers at least a -10 dB throughout 0-20 GHz, with a max isolation of -24 dB at 13 GHz, at +4 dBm reference input power.

Book 3D IC Stacking Technology

Download or read book 3D IC Stacking Technology written by Banqiu Wu and published by McGraw Hill Professional. This book was released on 2011-10-14 with total page 543 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest advances in three-dimensional integrated circuit stacking technology With a focus on industrial applications, 3D IC Stacking Technology offers comprehensive coverage of design, test, and fabrication processing methods for three-dimensional device integration. Each chapter in this authoritative guide is written by industry experts and details a separate fabrication step. Future industry applications and cutting-edge design potential are also discussed. This is an essential resource for semiconductor engineers and portable device designers. 3D IC Stacking Technology covers: High density through silicon stacking (TSS) technology Practical design ecosystem for heterogeneous 3D IC products Design automation and TCAD tool solutions for through silicon via (TSV)-based 3D IC stack Process integration for TSV manufacturing High-aspect-ratio silicon etch for TSV Dielectric deposition for TSV Barrier and seed deposition Copper electrodeposition for TSV Chemical mechanical polishing for TSV applications Temporary and permanent bonding Assembly and test aspects of TSV technology

Book Design of 3D Integrated Circuits and Systems

Download or read book Design of 3D Integrated Circuits and Systems written by Rohit Sharma and published by CRC Press. This book was released on 2014-11-12 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Three-dimensional (3D) integration of microsystems and subsystems has become essential to the future of semiconductor technology development. 3D integration requires a greater understanding of several interconnected systems stacked over each other. While this vertical growth profoundly increases the system functionality, it also exponentially increases the design complexity. Design of 3D Integrated Circuits and Systems tackles all aspects of 3D integration, including 3D circuit and system design, new processes and simulation techniques, alternative communication schemes for 3D circuits and systems, application of novel materials for 3D systems, and the thermal challenges to restrict power dissipation and improve performance of 3D systems. Containing contributions from experts in industry as well as academia, this authoritative text: Illustrates different 3D integration approaches, such as die-to-die, die-to-wafer, and wafer-to-wafer Discusses the use of interposer technology and the role of Through-Silicon Vias (TSVs) Presents the latest improvements in three major fields of thermal management for multiprocessor systems-on-chip (MPSoCs) Explores ThruChip Interface (TCI), NAND flash memory stacking, and emerging applications Describes large-scale integration testing and state-of-the-art low-power testing solutions Complete with experimental results of chip-level 3D integration schemes tested at IBM and case studies on advanced complementary metal–oxide–semiconductor (CMOS) integration for 3D integrated circuits (ICs), Design of 3D Integrated Circuits and Systems is a practical reference that not only covers a wealth of design issues encountered in 3D integration but also demonstrates their impact on the efficiency of 3D systems.

Book 3D IC Integration and Packaging

Download or read book 3D IC Integration and Packaging written by John H. Lau and published by McGraw Hill Professional. This book was released on 2015-07-06 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to 3D IC integration and packaging technology3D IC Integration and Packaging fully explains the latest microelectronics techniques for increasing chip density and maximizing performance while reducing power consumption. Based on a course developed by its author, this practical guide offers real-world problem-solving methods and teaches the trade-offs inherent in making system-level decisions. Explore key enabling technologies such as TSV, thin-wafer strength measurement and handling, microsolder bumping, redistribution layers, interposers, wafer-to-wafer bonding, chip-to-wafer bonding, 3D IC and MEMS, LED, and complementary metal-oxide semiconductor image sensors integration. Assembly, thermal management, and reliability are covered in complete detail.3D IC Integration and Packaging covers:• 3D integration for semiconductor IC packaging• Through-silicon vias modeling and testing• Stress sensors for thin-wafer handling and strength measurement• Package substrate technologies• Microbump fabrication, assembly, and reliability• 3D Si integration• 2.5D/3D IC integration• 3D IC integration with passive interposer• Thermal management of 2.5D/3D IC integration• Embedded 3D hybrid integration• 3D LED and IC integration• 3D MEMS and IC integration• 3D CMOS image sensors and IC integration• PoP, chip-to-chip interconnects, and embedded fan-out WLP

Book Handbook of 3D Integration  Volume 4

Download or read book Handbook of 3D Integration Volume 4 written by Paul D. Franzon and published by John Wiley & Sons. This book was released on 2019-01-25 with total page 655 pages. Available in PDF, EPUB and Kindle. Book excerpt: This fourth volume of the landmark handbook focuses on the design, testing, and thermal management of 3D-integrated circuits, both from a technological and materials science perspective. Edited and authored by key contributors from top research institutions and high-tech companies, the first part of the book provides an overview of the latest developments in 3D chip design, including challenges and opportunities. The second part focuses on the test methods used to assess the quality and reliability of the 3D-integrated circuits, while the third and final part deals with thermal management and advanced cooling technologies and their integration.