EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Visualization and Mathematics III

Download or read book Visualization and Mathematics III written by Hans-Christian Hege and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of state-of-the-art presentations on visualization problems in mathematics, fundamental mathematical research in computer graphics, and software frameworks for the application of visualization to real-world problems. Contributions have been written by leading experts and peer-refereed by an international editorial team. The book grew out of the third international workshop ‘Visualization and Mathematics’, May 22-25, 2002 in Berlin. The variety of topics covered makes the book ideal for researcher, lecturers, and practitioners.

Book Visualizing Mathematics with 3D Printing

Download or read book Visualizing Mathematics with 3D Printing written by Henry Segerman and published by JHU Press. This book was released on 2016-10-04 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to explain mathematics using 3D printed models. Winner of the Technical Text of the Washington Publishers Wouldn’t it be great to experience three-dimensional ideas in three dimensions? In this book—the first of its kind—mathematician and mathematical artist Henry Segerman takes readers on a fascinating tour of two-, three-, and four-dimensional mathematics, exploring Euclidean and non-Euclidean geometries, symmetry, knots, tilings, and soap films. Visualizing Mathematics with 3D Printing includes more than 100 color photographs of 3D printed models. Readers can take the book’s insights to a new level by visiting its sister website, 3dprintmath.com, which features virtual three-dimensional versions of the models for readers to explore. These models can also be ordered online or downloaded to print on a 3D printer. Combining the strengths of book and website, this volume pulls higher geometry and topology out of the realm of the abstract and puts it into the hands of anyone fascinated by mathematical relationships of shape. With the book in one hand and a 3D printed model in the other, readers can find deeper meaning while holding a hyperbolic honeycomb, touching the twists of a torus knot, or caressing the curves of a Klein quartic.

Book Visualization and Mathematics

Download or read book Visualization and Mathematics written by H.-C. Hege and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Visualization and mathematics have begun a fruitful relationship, establishing links between problems and solutions of both fields. In some areas of mathematics, like differential geometry and numerical mathematics, visualization techniques are applied with great success. However, visualization methods are relying heavily on mathematical concepts. Applications of visualization in mathematical research and the use of mathematical methods in visualization have been topic of an international workshop in Berlin in June 1995. Selected contributions treat topics of particular interest in current research. Experts are reporting on their latest work, giving an overview on this fascinating new area. The reader will get insight to state-of-the-art techniques for solving visualization problems and mathematical questions.

Book Visualizing Mathematics

Download or read book Visualizing Mathematics written by Kelly S. Mix and published by Springer. This book was released on 2018-12-07 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume surveys recent research on spatial visualization in mathematics in the fields of cognitive psychology and mathematics education. The general topic of spatial skill and mathematics has a long research tradition, but has been gaining attention in recent years, although much of this research happens in disconnected subfields. This volume aims to promote interaction between researchers, not only to provide a more comprehensive view of spatial visualization and mathematics, but also to stimulate innovative new directions in research based on a more coordinated effort. It features ten chapters authored by leading researchers in cognitive psychology and mathematics education, as well as includes dynamic commentaries by mathematics education researchers on cognitive psychology chapters, and by cognitive psychologists on mathematics education chapters. Among the topics included: From intuitive spatial measurement to understanding of units. Spatial reasoning: a critical problem-solving tool in children’s mathematics strategy tool-kit. What processes underlie the relation between spatial skill and mathematics? Learning with and from drawing in early years geometry. Communication of visual information and complexity of reasoning by mathematically talented students. Visualizing Mathematics makes substantial progress in understanding the role of spatial reasoning in mathematical thought and in connecting various subfields of research. It promises to make an impact among psychologists, education scholars, and mathematics educators in the convergence of psychology and education.

Book Visualization in Teaching and Learning Mathematics

Download or read book Visualization in Teaching and Learning Mathematics written by Walter Zimmermann and published by MAA Press. This book was released on 1991 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty papers in the book give an overview of research analysis, practical experience, and informed opinion about the role of visualization in teaching and learning mathematics, especially at the undergraduate level. Visualization, in its broadest level. Visualization, in its broadest sense, is as old as mathematics, but progress in computer graphics has generated a renaissance of interest in visual representations and visual thinking in mathematics.

Book Visualization in Mathematics  Reading and Science Education

Download or read book Visualization in Mathematics Reading and Science Education written by Linda M. Phillips and published by Springer Science & Business Media. This book was released on 2010-09-02 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science education at school level worldwide faces three perennial problems that have become more pressing of late. These are to a considerable extent interwoven with concerns about the entire school curriculum and its reception by students. The rst problem is the increasing intellectual isolation of science from the other subjects in the school curriculum. Science is too often still taught didactically as a collection of pre-determined truths about which there can be no dispute. As a con- quence, many students do not feel any “ownership” of these ideas. Most other school subjects do somewhat better in these regards. For example, in language classes, s- dents suggest different interpretations of a text and then debate the relative merits of the cases being put forward. Moreover, ideas that are of use in science are presented to students elsewhere and then re-taught, often using different terminology, in s- ence. For example, algebra is taught in terms of “x, y, z” in mathematics classes, but students are later unable to see the relevance of that to the meaning of the universal gas laws in physics, where “p, v, t” are used. The result is that students are c- fused and too often alienated, leading to their failure to achieve that “extraction of an education from a scheme of instruction” which Jerome Bruner thought so highly desirable.

Book Visualization  Explanation and Reasoning Styles in Mathematics

Download or read book Visualization Explanation and Reasoning Styles in Mathematics written by P. Mancosu and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 20th century philosophy of mathematics has to a great extent been dominated by views developed during the so-called foundational crisis in the beginning of that century. These views have primarily focused on questions pertaining to the logical structure of mathematics and questions regarding the justi?cation and consistency of mathematics. Paradigmatic in this - spect is Hilbert’s program which inherits from Frege and Russell the project to formalize all areas of ordinary mathematics and then adds the requi- ment of a proof, by epistemically privileged means (?nitistic reasoning), of the consistency of such formalized theories. While interest in modi?ed v- sions of the original foundational programs is still thriving, in the second part of the twentieth century several philosophers and historians of mat- matics have questioned whether such foundational programs could exhaust the realm of important philosophical problems to be raised about the nature of mathematics. Some have done so in open confrontation (and hostility) to the logically based analysis of mathematics which characterized the cl- sical foundational programs, while others (and many of the contributors to this book belong to this tradition) have only called for an extension of the range of questions and problems that should be raised in connection with an understanding of mathematics. The focus has turned thus to a consideration of what mathematicians are actually doing when they produce mathematics. Questions concerning concept-formation, understanding, heuristics, changes instyle of reasoning, the role of analogies and diagrams etc.

Book Mathematical Principles for Scientific Computing and Visualization

Download or read book Mathematical Principles for Scientific Computing and Visualization written by Gerald Farin and published by CRC Press. This book was released on 2008-10-21 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This non-traditional introduction to the mathematics of scientific computation describes the principles behind the major methods, from statistics, applied mathematics, scientific visualization, and elsewhere, in a way that is accessible to a large part of the scientific community. Introductory material includes computational basics, a review of coo

Book Topological Methods in Data Analysis and Visualization III

Download or read book Topological Methods in Data Analysis and Visualization III written by Peer-Timo Bremer and published by Springer Science & Business. This book was released on 2014-04-22 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of peer-reviewed conference papers provides comprehensive coverage of cutting-edge research in topological approaches to data analysis and visualization. It encompasses the full range of new algorithms and insights, including fast homology computation, comparative analysis of simplification techniques, and key applications in materials and medical science. The volume also features material on core research challenges such as the representation of large and complex datasets and integrating numerical methods with robust combinatorial algorithms. Reflecting the focus of the TopoInVis 2013 conference, the contributions evince the progress currently being made on finding experimental solutions to open problems in the sector. They provide an inclusive snapshot of state-of-the-art research that enables researchers to keep abreast of the latest developments and provides a foundation for future progress. With papers by some of the world’s leading experts in topological techniques, this volume is a major contribution to the literature in a field of growing importance with applications in disciplines that range from engineering to medicine.

Book Mathematical Visualization

Download or read book Mathematical Visualization written by H.-C. Hege and published by Springer Science & Business Media. This book was released on 1998-10-20 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Visualization is a young new discipline. It offers efficient visualization tools to the classical subjects of mathematics, and applies mathematical techniques to problems in computer graphics and scientific visualization. Originally, it started in the interdisciplinary area of differential geometry, numerical mathematics, and computer graphics. In recent years, the methods developed have found important applications. The current volume is the quintessence of an international workshop in September 1997 in Berlin, focusing on recent developments in this emerging area. Experts present selected research work on new algorithms for visualization problems, describe the application and experiments in geometry, and develop new numerical or computer graphical techniques.

Book GPU Based Interactive Visualization Techniques

Download or read book GPU Based Interactive Visualization Techniques written by Daniel Weiskopf and published by Springer Science & Business Media. This book was released on 2006-10-13 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents efficient visualization techniques, a prerequisite for the interactive exploration of complex data sets. High performance is demonstrated as a process of devising algorithms for the fast graphics processing units (GPUs) of modern graphics hardware. Coverage includes parallelization on cluster computers with several GPUs, adaptive rendering methods, and non-photorealistic rendering techniques for visualization.

Book Visualization and Processing of Tensor Fields

Download or read book Visualization and Processing of Tensor Fields written by Joachim Weickert and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix-valued data sets – so-called second order tensor fields – have gained significant importance in scientific visualization and image processing due to recent developments such as diffusion tensor imaging. This book is the first edited volume that presents the state of the art in the visualization and processing of tensor fields. It contains some longer chapters dedicated to surveys and tutorials of specific topics, as well as a great deal of original work by leading experts that has not been published before. It serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as as a textbook for specialized classes and seminars for graduate and doctoral students.

Book Mathematical Foundations of Scientific Visualization  Computer Graphics  and Massive Data Exploration

Download or read book Mathematical Foundations of Scientific Visualization Computer Graphics and Massive Data Exploration written by Torsten Möller and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of visualization is the accurate, interactive, and intuitive presentation of data. Complex numerical simulations, high-resolution imaging devices and incre- ingly common environment-embedded sensors are the primary generators of m- sive data sets. Being able to derive scienti?c insight from data increasingly depends on having mathematical and perceptual models to provide the necessary foundation for effective data analysis and comprehension. The peer-reviewed state-of-the-art research papers included in this book focus on continuous data models, such as is common in medical imaging or computational modeling. From the viewpoint of a visualization scientist, we typically collaborate with an application scientist or engineer who needs to visually explore or study an object which is given by a set of sample points, which originally may or may not have been connected by a mesh. At some point, one generally employs low-order piecewise polynomial approximationsof an object, using one or several dependent functions. In order to have an understanding of a higher-dimensional geometrical “object” or function, ef?cient algorithms supporting real-time analysis and manipulation (- tation, zooming) are needed. Often, the data represents 3D or even time-varying 3D phenomena (such as medical data), and the access to different layers (slices) and structures (the underlying topology) comprising such data is needed.

Book Mathematics and Art

    Book Details:
  • Author : Claude P. Bruter
  • Publisher : Springer Science & Business Media
  • Release : 2013-04-17
  • ISBN : 3662049090
  • Pages : 337 pages

Download or read book Mathematics and Art written by Claude P. Bruter and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent progress in research, teaching and communication has arisen from the use of new tools in visualization. To be fruitful, visualization needs precision and beauty. This book is a source of mathematical illustrations by mathematicians as well as artists. It offers examples in many basic mathematical fields including polyhedra theory, group theory, solving polynomial equations, dynamical systems and differential topology. For a long time, arts, architecture, music and painting have been the source of new developments in mathematics. And vice versa, artists have often found new techniques, themes and inspiration within mathematics. Here, while mathematicians provide mathematical tools for the analysis of musical creations, the contributions from sculptors emphasize the role of mathematics in their work.

Book Geometric Modeling for Scientific Visualization

Download or read book Geometric Modeling for Scientific Visualization written by Guido Brunnett and published by Springer Science & Business Media. This book was released on 2003-11-17 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Modeling and Scientific Visualization are both established disciplines, each with their own series of workshops, conferences and journals. But clearly both disciplines overlap; this observation led to the idea of composing a book on Geometric Modeling for Scientific Visualization.

Book The Grapes of Math

    Book Details:
  • Author : Alex Bellos
  • Publisher : Simon and Schuster
  • Release : 2014-06-10
  • ISBN : 1451640129
  • Pages : 352 pages

Download or read book The Grapes of Math written by Alex Bellos and published by Simon and Schuster. This book was released on 2014-06-10 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: From triangles, rotations and power laws, to cones, curves and the dreaded calculus, Alex takes you on a journey of mathematical discovery with his signature wit and limitless enthusiasm. He sifts through over 30,000 survey submissions to uncover the world’s favourite number, and meets a mathematician who looks for universes in his garage. He attends the World Mathematical Congress in India, and visits the engineer who designed the first roller-coaster loop. Get hooked on math as Alex delves deep into humankind’s turbulent relationship with numbers, and reveals how they have shaped the world we live in.

Book Mindset Mathematics  Visualizing and Investigating Big Ideas  Grade 3

Download or read book Mindset Mathematics Visualizing and Investigating Big Ideas Grade 3 written by Jo Boaler and published by John Wiley & Sons. This book was released on 2018-07-31 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engage students in mathematics using growth mindset techniques The most challenging parts of teaching mathematics are engaging students and helping them understand the connections between mathematics concepts. In this volume, you'll find a collection of low floor, high ceiling tasks that will help you do just that, by looking at the big ideas at the third-grade level through visualization, play, and investigation. During their work with tens of thousands of teachers, authors Jo Boaler, Jen Munson, and Cathy Williams heard the same message—that they want to incorporate more brain science into their math instruction, but they need guidance in the techniques that work best to get across the concepts they needed to teach. So the authors designed Mindset Mathematics around the principle of active student engagement, with tasks that reflect the latest brain science on learning. Open, creative, and visual math tasks have been shown to improve student test scores, and more importantly change their relationship with mathematics and start believing in their own potential. The tasks in Mindset Mathematics reflect the lessons from brain science that: There is no such thing as a math person - anyone can learn mathematics to high levels. Mistakes, struggle and challenge are the most important times for brain growth. Speed is unimportant in mathematics. Mathematics is a visual and beautiful subject, and our brains want to think visually about mathematics. With engaging questions, open-ended tasks, and four-color visuals that will help kids get excited about mathematics, Mindset Mathematics is organized around nine big ideas which emphasize the connections within the Common Core State Standards (CCSS) and can be used with any current curriculum.