Download or read book Human Activity Recognition and Prediction written by Yun Fu and published by Springer. This book was released on 2015-12-23 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques.
Download or read book Machine Learning for Vision Based Motion Analysis written by Liang Wang and published by Springer Science & Business Media. This book was released on 2010-11-18 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques of vision-based motion analysis aim to detect, track, identify, and generally understand the behavior of objects in image sequences. With the growth of video data in a wide range of applications from visual surveillance to human-machine interfaces, the ability to automatically analyze and understand object motions from video footage is of increasing importance. Among the latest developments in this field is the application of statistical machine learning algorithms for object tracking, activity modeling, and recognition. Developed from expert contributions to the first and second International Workshop on Machine Learning for Vision-Based Motion Analysis, this important text/reference highlights the latest algorithms and systems for robust and effective vision-based motion understanding from a machine learning perspective. Highlighting the benefits of collaboration between the communities of object motion understanding and machine learning, the book discusses the most active forefronts of research, including current challenges and potential future directions. Topics and features: provides a comprehensive review of the latest developments in vision-based motion analysis, presenting numerous case studies on state-of-the-art learning algorithms; examines algorithms for clustering and segmentation, and manifold learning for dynamical models; describes the theory behind mixed-state statistical models, with a focus on mixed-state Markov models that take into account spatial and temporal interaction; discusses object tracking in surveillance image streams, discriminative multiple target tracking, and guidewire tracking in fluoroscopy; explores issues of modeling for saliency detection, human gait modeling, modeling of extremely crowded scenes, and behavior modeling from video surveillance data; investigates methods for automatic recognition of gestures in Sign Language, and human action recognition from small training sets. Researchers, professional engineers, and graduate students in computer vision, pattern recognition and machine learning, will all find this text an accessible survey of machine learning techniques for vision-based motion analysis. The book will also be of interest to all who work with specific vision applications, such as surveillance, sport event analysis, healthcare, video conferencing, and motion video indexing and retrieval.
Download or read book Advances in Neural Networks ISNN 2007 written by Derong Liu and published by Springer. This book was released on 2007-07-14 with total page 1346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is part of a three volume set that constitutes the refereed proceedings of the 4th International Symposium on Neural Networks, ISNN 2007, held in Nanjing, China in June 2007. Coverage includes neural networks for control applications, robotics, data mining and feature extraction, chaos and synchronization, support vector machines, fault diagnosis/detection, image/video processing, and applications of neural networks.
Download or read book Vision Based Human Activity Recognition written by Zhongxu Hu and published by Springer Nature. This book was released on 2022-04-22 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a systematic, comprehensive, and timely review on V-HAR, and it covers the related tasks, cutting-edge technologies, and applications of V-HAR, especially the deep learning-based approaches. The field of Human Activity Recognition (HAR) has become one of the trendiest research topics due to the availability of various sensors, live streaming of data and the advancement in computer vision, machine learning, etc. HAR can be extensively used in many scenarios, for example, medical diagnosis, video surveillance, public governance, also in human–machine interaction applications. In HAR, various human activities such as walking, running, sitting, sleeping, standing, showering, cooking, driving, abnormal activities, etc., are recognized. The data can be collected from wearable sensors or accelerometer or through video frames or images; among all the sensors, vision-based sensors are now the most widely used sensors due to their low-cost, high-quality, and unintrusive characteristics. Therefore, vision-based human activity recognition (V-HAR) is the most important and commonly used category among all HAR technologies. The addressed topics include hand gestures, head pose, body activity, eye gaze, attention modeling, etc. The latest advancements and the commonly used benchmark are given. Furthermore, this book also discusses the future directions and recommendations for the new researchers.
Download or read book Contactless Human Activity Analysis written by Md Atiqur Rahman Ahad and published by Springer Nature. This book was released on 2021-03-23 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a truly comprehensive, timely, and very much needed treatise on the conceptualization of analysis, and design of contactless & multimodal sensor-based human activities, behavior understanding & intervention. From an interaction design perspective, the book provides views and methods that allow for more safe, trustworthy, efficient, and more natural interaction with technology that will be embedded in our daily living environments. The chapters in this book cover sufficient grounds and depth in related challenges and advances in sensing, signal processing, computer vision, and mathematical modeling. It covers multi-domain applications, including surveillance and elderly care that will be an asset to entry-level and practicing engineers and scientists.(See inside for the reviews from top experts)
Download or read book Human Activity Recognition written by Miguel A. Labrador and published by CRC Press. This book was released on 2013-12-05 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn How to Design and Implement HAR Systems The pervasiveness and range of capabilities of today's mobile devices have enabled a wide spectrum of mobile applications that are transforming our daily lives, from smartphones equipped with GPS to integrated mobile sensors that acquire physiological data. Human Activity Recognition: Using Wearable Sen
Download or read book Deep Learning for Human Activity Recognition written by Xiaoli Li and published by Springer Nature. This book was released on 2021-02-17 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021. Due to the COVID-19 pandemic the workshop was postponed to the year 2021 and held in a virtual format. The 10 presented papers were thorougly reviewed and included in the volume. They present recent research on applications of human activity recognition for various areas such as healthcare services, smart home applications, and more.
Download or read book Deep Learning for Time Series Forecasting written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-08-30 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. With clear explanations, standard Python libraries, and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.
Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala
Download or read book IoT Sensor Based Activity Recognition written by Md Atiqur Rahman Ahad and published by Springer. This book was released on 2021-08-01 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offer clear descriptions of the basic structure for the recognition and classification of human activities using different types of sensor module and smart devices in e.g. healthcare, education, monitoring the elderly, daily human behavior, and fitness monitoring. In addition, the complexities, challenges, and design issues involved in data collection, processing, and other fundamental stages along with datasets, methods, etc., are discussed in detail. The book offers a valuable resource for readers in the fields of pattern recognition, human–computer interaction, and the Internet of Things.
Download or read book Artificial Intelligence and Data Mining Approaches in Security Frameworks written by Neeraj Bhargava and published by John Wiley & Sons. This book was released on 2021-08-24 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: ARTIFICIAL INTELLIGENCE AND DATA MINING IN SECURITY FRAMEWORKS Written and edited by a team of experts in the field, this outstanding new volume offers solutions to the problems of security, outlining the concepts behind allowing computers to learn from experience and understand the world in terms of a hierarchy of concepts, with each concept defined through its relation to simpler concepts. Artificial intelligence (AI) and data mining is the fastest growing field in computer science. AI and data mining algorithms and techniques are found to be useful in different areas like pattern recognition, automatic threat detection, automatic problem solving, visual recognition, fraud detection, detecting developmental delay in children, and many other applications. However, applying AI and data mining techniques or algorithms successfully in these areas needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to artificial intelligence. Successful application of security frameworks to enable meaningful, cost effective, personalized security service is a primary aim of engineers and researchers today. However realizing this goal requires effective understanding, application and amalgamation of AI and data mining and several other computing technologies to deploy such a system in an effective manner. This book provides state of the art approaches of artificial intelligence and data mining in these areas. It includes areas of detection, prediction, as well as future framework identification, development, building service systems and analytical aspects. In all these topics, applications of AI and data mining, such as artificial neural networks, fuzzy logic, genetic algorithm and hybrid mechanisms, are explained and explored. This book is aimed at the modeling and performance prediction of efficient security framework systems, bringing to light a new dimension in the theory and practice. This groundbreaking new volume presents these topics and trends, bridging the research gap on AI and data mining to enable wide-scale implementation. Whether for the veteran engineer or the student, this is a must-have for any library. This groundbreaking new volume: Clarifies the understanding of certain key mechanisms of technology helpful in the use of artificial intelligence and data mining in security frameworks Covers practical approaches to the problems engineers face in working in this field, focusing on the applications used every day Contains numerous examples, offering critical solutions to engineers and scientists Presents these new applications of AI and data mining that are of prime importance to human civilization as a whole
Download or read book Mastering Computer Vision with TensorFlow 2 x written by Krishnendu Kar and published by Packt Publishing Ltd. This book was released on 2020-05-15 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply neural network architectures to build state-of-the-art computer vision applications using the Python programming language Key FeaturesGain a fundamental understanding of advanced computer vision and neural network models in use todayCover tasks such as low-level vision, image classification, and object detectionDevelop deep learning models on cloud platforms and optimize them using TensorFlow Lite and the OpenVINO toolkitBook Description Computer vision allows machines to gain human-level understanding to visualize, process, and analyze images and videos. This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis. You'll start with the key principles of computer vision and deep learning to build a solid foundation, before covering neural network architectures and understanding how they work rather than using them as a black box. Next, you'll explore architectures such as VGG, ResNet, Inception, R-CNN, SSD, YOLO, and MobileNet. As you advance, you'll learn to use visual search methods using transfer learning. You'll also cover advanced computer vision concepts such as semantic segmentation, image inpainting with GAN's, object tracking, video segmentation, and action recognition. Later, the book focuses on how machine learning and deep learning concepts can be used to perform tasks such as edge detection and face recognition. You'll then discover how to develop powerful neural network models on your PC and on various cloud platforms. Finally, you'll learn to perform model optimization methods to deploy models on edge devices for real-time inference. By the end of this book, you'll have a solid understanding of computer vision and be able to confidently develop models to automate tasks. What you will learnExplore methods of feature extraction and image retrieval and visualize different layers of the neural network modelUse TensorFlow for various visual search methods for real-world scenariosBuild neural networks or adjust parameters to optimize the performance of modelsUnderstand TensorFlow DeepLab to perform semantic segmentation on images and DCGAN for image inpaintingEvaluate your model and optimize and integrate it into your application to operate at scaleGet up to speed with techniques for performing manual and automated image annotationWho this book is for This book is for computer vision professionals, image processing professionals, machine learning engineers and AI developers who have some knowledge of machine learning and deep learning and want to build expert-level computer vision applications. In addition to familiarity with TensorFlow, Python knowledge will be required to get started with this book.
Download or read book Pattern Recognition and Image Analysis written by David Hutchison and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume constitutes the refereed proceedings of the 4th Iberian Conference on Pattern Recognition and Image Analysis, IbPRIA 2009, held in Póvoa de Varzim, Portugal in June 2009. The 33 revised full papers and 29 revised poster papers presented together with 3 invited talks were carefully reviewed and selected from 106 submissions. The papers are organized in topical sections on computer vision, image analysis and processing, as well as pattern recognition.
Download or read book Active and Assisted Living written by Francisco Florez-Revuelta and published by IET. This book was released on 2016-08-10 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a broad introductory handbook, for academic and industry researchers, covering the major technologies and applications in Ambient Assisted Living (AAL). Set out in three main sections: Part 1 focuses on current state-of-the-art technology and critical analysis: Part 2 covers the applications of these technologies; and Part 3 includes general issues such as usability, accessibility, privacy and ethics. With contributions from around the world, topics covered include: smart homes, environmental sensors and data fusion, wearable sensors, devices and smart clothes, standards and interoperability, computer vision for AAL, reasoning systems, person-environment interaction, networks and integration platforms, assistive and service robotics, tele-care and telehealth, gait analysis, fall prevention, detection and intervention, prevention and management of chronic conditions, support to activities of daily living, mental health and cognitive stimulation, indoor and outdoor mobility, well being, social interaction and isolation, usability, accessibility, privacy and ethical issues. Active and Assisted Living is an essential resource for researchers in academia and industry developing AAL technologies. Students, healthcare practitioners and engineers, in this cross-disciplinary field, which includes robotics and automation, telecommunications, computing and healthcare, will find this handbook of use.
Download or read book Proceedings of International Joint Conference on Advances in Computational Intelligence written by Mohammad Shorif Uddin and published by Springer Nature. This book was released on with total page 797 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Smart Wearable Devices in Healthcare Methodologies Applications and Algorithms written by Chang Yan and published by Frontiers Media SA. This book was released on 2023-12-14 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wearable health devices have been an emerging technology that enables an ambulatory acquisition of physiological signals to monitor health status over a long time (hours/days/weeks/years) inside and outside clinical environments. Big data and deep learning, in particular, are receiving a lot of attention in this rapidly growing digital health community. A key benefit of deep learning is to analyze and learn massive amounts of data, which makes it especially valuable in healthcare since raw data is largely gathered from personalized wearable health devices. A wide range of users may benefit from unobstructed and even remote monitoring of pertinent or vital signs, which makes it easier to detect life-threatening diseases early, track the progression of pathologies and stress levels, evaluate the efficacy of therapies, provide low-cost and reliable diagnoses, etc. Today’s personal health devices have provided an amazing insight into people’s health and wellness, which allow clinicians to use these smart wearables to collect and analyze measuring data like electroencephalogram (EEG), electrocardiogram (ECG or EKG), respiration, heart rate, temperature level, blood oxygen, and blood pressure for health monitoring or clinical trials. This Research Topic mainly focuses on the technical revolution in wearable health systems, which aims to design more smart and useful wearables, contributing to a substantial change in the methodologies, applications, and algorithms of machine learning for wearable health devices. With the help of deep learning and sensor fusion capabilities from wearable health platforms, this data will be used more effectively, which can help to construct smart, novel, specific solutions to improve the quality of healthcare and capabilities of utilizing new deep learning technologies.
Download or read book Proceedings of Fourth Doctoral Symposium on Computational Intelligence written by Abhishek Swaroop and published by Springer Nature. This book was released on 2023-09-16 with total page 937 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features high-quality research papers presented at Fourth Doctoral Symposium on Computational Intelligence (DoSCI 2023), organized by Institute of Engineering and Technology (IET), AKTU, Lucknow, India, on March 3, 2023. This book discusses the topics such as computational intelligence, artificial intelligence, deep learning, evolutionary algorithms, swarm intelligence, fuzzy sets and vague sets, rough set theoretic approaches, quantum-inspired computational intelligence, hybrid computational intelligence, machine learning, computer vision, soft computing, distributed computing, parallel and grid computing, cloud computing, high-performance computing, biomedical computing, and decision support and decision making