EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Vision Assisted Landing of an Unmanned Aerial Vehicle

Download or read book Vision Assisted Landing of an Unmanned Aerial Vehicle written by and published by . This book was released on 2005 with total page 9 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, a strategy for an autonomous landing maneuver for an under-actuated, unmanned aerial vehicle (UAV) using position information obtained from a single monocular on-board camera is presented. Although the UAV is underactuated in translational control inputs (i.e., a lift force can only be produced), the proposed controller is shown to achieve globally uniform ultimate boundedness (GUUB) in position regulation error during the landing approach. The proposed vision-based control algorithm is built upon homography-based techniques and Lyapunov design methods.

Book Vision Based Navigation for Autonomous Landing of Unmanned Aerial Vehicles

Download or read book Vision Based Navigation for Autonomous Landing of Unmanned Aerial Vehicles written by Paul A. Ghyzel and published by . This book was released on 2000-09-01 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: The role of Unmanned Aerial Vehicles (UAV) for modern military operations is expected to expand in the 21st Century, including increased deployment of UAVs from Navy ships at sea. Autonomous operation of UAVs from ships at sea requires the UAV to land on a moving ship using only passive sensors installed in the UAV. This thesis investigates the feasibility of using passive vision sensors installed in the UAV to estimate the UAV position relative to the moving platform. A navigation algorithm based on photogrammetry and perspective estimation is presented for numerically determining the relative position and orientation of an aircraft with respect to a ship that possesses three visibly significant points with known separation distances. Original image processing algorithms that reliably locate visually significant features in monochrome images are developed. Monochrome video imagery collected during flight test with an infrared video camera mounted in the nose of a UAV during actual landing approaches is presented. The navigation and image processing algorithms are combined to reduce the flight test images into vehicle position estimates. These position estimates are compared to truth data to demonstrate the feasibility of passive, vision-based sensors for aircraft navigation. Conclusions are drawn, and recommendations for further study are presented.

Book A Vision System for Landing an Unmanned Aerial Vehicle

Download or read book A Vision System for Landing an Unmanned Aerial Vehicle written by Courtney S. Sharp and published by . This book was released on 2000 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Autonomous Landing of a Rotary Unmanned Aerial Vehicle in a Non cooperative Environment Using Machine Vision

Download or read book Autonomous Landing of a Rotary Unmanned Aerial Vehicle in a Non cooperative Environment Using Machine Vision written by Joshua Hintze and published by . This book was released on 2004 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: Landing an Unmanned Aerial Vehicle (UAV) is a non-trivial problem. Removing the ability to cooperate with the landing site further increases the complexity. This thesis develops a multi-stage process that allows a UAV to locate the safest landing site, and then land without a georeference. Machine vision is the vehicle sensor used to locate potential landing hazards and generate an estimated UAV position. A description of the algorithms, along with validation results, are presented. The thesis shows that software-simulated landing performs adequately, and that future hardware integration looks promising.

Book Vision based Automatic Landing of a Rotary UAV

Download or read book Vision based Automatic Landing of a Rotary UAV written by Iryna Borshchova and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A hybrid-like (continuous and discrete-event) approach to controlling a small multi-rotor unmanned aerial system (UAS) while landing on a moving platform is described. The landing scheme is based on positioning visual markers on a landing platform in a detectable pattern. After the onboard camera detects the object pattern, the inner control algorithm sends visual-based servo-commands to align the multi-rotor with the targets. This method is less computationally complex as it uses color-based object detection applied to a geometric pattern instead of feature tracking algorithms, and has the advantage of not requiring the distance to the objects to be calculated. The continuous approach accounts for the UAV and the platform rolling/pitching/yawing, which is essential for a real-time landing on a moving target such as a ship. A discrete-event supervisor working in parallel with the inner controller is designed to assist the automatic landing of a multi-rotor UAV on a moving target. This supervisory control strategy allows the pilot and crew to make time-critical decisions when exceptions, such as losing targets from the field of view, occur. The developed supervisor improves the low-level vision-based auto-landing system and high-level human-machine interface. The proposed hybrid-like approach was tested in simulation using a quadcopter model in Virtual Robotics Experimentation Platform (V-REP) working in parallel with Robot Operating System (ROS). Finally, this method was validated in a series of real-time experiments with indoor and outdoor quadcopters landing on both static and moving platforms. The developed prototype system has demonstrated the capability of landing within 25 cm of the desired point of touchdown. This auto-landing system is small (100 x 100 mm), light-weight (100 g), and consumes little power (under 2 W).

Book A Depth based Computer Vision Approach to Unmanned Aircraft System Landing with Optimal Positioning

Download or read book A Depth based Computer Vision Approach to Unmanned Aircraft System Landing with Optimal Positioning written by Nicholas Quatrociocchi and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "High traffic congestion in cities can lead to difficulties in delivering appropriate aid to people in need of emergency services. Developing an autonomous aerial medical evacuation system with the required size to facilitate the need can allow for the mitigation of the constraint. The aerial system must be capable of vertical takeoff and landing to reach highly conjected areas and areas where traditional aircraft cannot access. In general, the most challenging limitation within any proposed solution is the landing sequence. There have been several techniques developed over the years to land aircraft autonomously; however, very little attention has been scoped to operate strictly within highly congested urban-type environments. The goal of this research is to develop a possible solution to achieve autonomous landing based on computer vision-capture systems. For example, by utilizing modern computer vision approaches involving depth estimation through binocular stereo computer vision, a depth map can be developed. If the vision system is mounted to the bottom of an autonomous aerial system, it can represent the area below the aircraft and determine a possible landing zone. In this work, neural networks are used to isolate the ground via the computer vision height map. Then out of the entire visible ground area, a potential landing position can be estimated. An optimization routine is then developed to identify the most optimal landing position within the visible area. The optimization routine identifies the largest identifiable open area near the desired landing location. Web cameras were utilized and processed on a desktop to form a basis for the computer vision system. The algorithms were tested and verified using a simulation effort proving the feasibility of the approach. In addition, the system was tested on a scaled down city scene and was able to determine an optimal landing zone."--Abstract.

Book Real time Evaluation of Vision based Navigation for Autonomous Landing of a Rotorcraft Unmanned Aerial Vehicle in a Non cooperative Environment

Download or read book Real time Evaluation of Vision based Navigation for Autonomous Landing of a Rotorcraft Unmanned Aerial Vehicle in a Non cooperative Environment written by Dale D. Rowley and published by . This book was released on 2005 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Landing a rotorcraft unmanned aerial vehicle (RUAV) without human supervision is a capability that would significantly broaden the usefulness of UAVs. The benefits are even greater if the functionality is expanded to involve landing sites with unknown terrain and a lack of GPS or other positioning aids. Examples of these types of non-cooperative environments could range from remote mountainous regions to an urban building rooftop or a cluttered parking lot.

Book Advances in Intelligent Automation and Soft Computing

Download or read book Advances in Intelligent Automation and Soft Computing written by Xiaolong Li and published by Springer Nature. This book was released on 2021-07-26 with total page 1317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents select proceedings of the International Conference on Intelligent Automation and Soft Computing (IASC2021). Various topics covered in this book include AI algorithm, neural networks, pattern recognition, machine learning, blockchain technology, system engineering, computer vision and image processing, adaptive control and robotics, big data and data processing, networking and security. The book is a valuable reference for beginners, researchers, and professionals interested in artificial intelligence, automation, and soft computing.

Book Embedded Platforms for UAS Landing Path and Obstacle Detection

Download or read book Embedded Platforms for UAS Landing Path and Obstacle Detection written by Umberto Papa and published by Springer. This book was released on 2018-01-05 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on the design and development of a system that assists remote pilots during the landing procedure. In particular, it covers a previously neglected topic, namely the search for the best pathway and landing site. It describes the system’s components, such as the ultrasonic sensor, infrared sensor and optical sensor, in detail, and discusses the experimental tests carried out in both controlled laboratory and real-world environments. Providing a fascinating survey of the state of the art in the field of unmanned aircraft system electronics design and development, the book also presents recent advances in and cutting-edge methodologies for the development of acquisition systems and inexpensive sensor design for navigation data.

Book Advances in Unmanned Aerial Vehicles

Download or read book Advances in Unmanned Aerial Vehicles written by Kimon P. Valavanis and published by Springer Science & Business Media. This book was released on 2008-02-26 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen tremendous interest in the production and refinement of unmanned aerial vehicles, both fixed-wing, such as airplanes and rotary-wing, such as helicopters and vertical takeoff and landing vehicles. This book provides a diversified survey of research and development on small and miniature unmanned aerial vehicles of both fixed and rotary wing designs. From historical background to proposed new applications, this is the most comprehensive reference yet.

Book Autonomous Flying Robots

Download or read book Autonomous Flying Robots written by Kenzo Nonami and published by Springer Science & Business Media. This book was released on 2010-09-15 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advance in robotics has boosted the application of autonomous vehicles to perform tedious and risky tasks or to be cost-effective substitutes for their - man counterparts. Based on their working environment, a rough classi cation of the autonomous vehicles would include unmanned aerial vehicles (UAVs), - manned ground vehicles (UGVs), autonomous underwater vehicles (AUVs), and autonomous surface vehicles (ASVs). UAVs, UGVs, AUVs, and ASVs are called UVs (unmanned vehicles) nowadays. In recent decades, the development of - manned autonomous vehicles have been of great interest, and different kinds of autonomous vehicles have been studied and developed all over the world. In part- ular, UAVs have many applications in emergency situations; humans often cannot come close to a dangerous natural disaster such as an earthquake, a ood, an active volcano, or a nuclear disaster. Since the development of the rst UAVs, research efforts have been focused on military applications. Recently, however, demand has arisen for UAVs such as aero-robotsand ying robotsthat can be used in emergency situations and in industrial applications. Among the wide variety of UAVs that have been developed, small-scale HUAVs (helicopter-based UAVs) have the ability to take off and land vertically as well as the ability to cruise in ight, but their most importantcapability is hovering. Hoveringat a point enables us to make more eff- tive observations of a target. Furthermore, small-scale HUAVs offer the advantages of low cost and easy operation.

Book Vision in Man and Machine

Download or read book Vision in Man and Machine written by Martin D. Levine and published by McGraw-Hill Companies. This book was released on 1985 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book UAV Sensors for Environmental Monitoring

Download or read book UAV Sensors for Environmental Monitoring written by Felipe Gonzalez Toro and published by MDPI. This book was released on 2018-03-05 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "UAV Sensors for Environmental Monitoring" that was published in Sensors

Book Experimental Robotics IX

Download or read book Experimental Robotics IX written by Marcelo H. Ang and published by Springer Science & Business Media. This book was released on 2006-02-09 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Symposium on Experimental Robotics (ISER) is a series of bi-annual meetings which are organized in a rotating fashion around North America, Europe and Asia/Oceania. The goal of ISER is to provide a forum for research in robotics that focuses on novelty of theoretical contributions validated by experimental results. The meetings are conceived to bring together, in a small group setting, researchers from around the world who are in the forefront of experimental robotics research. This unique reference presents the latest advances across the various fields of robotics, with ideas that are not only conceived conceptually but also verified experimentally. It collects contributions on the current developments and new directions in the field of experimental robotics, which are based on the papers presented at the Ninth ISER held in Singapore.

Book Precision Landing of a Quadrotor UAV on a Moving Target Using Low cost Sensors

Download or read book Precision Landing of a Quadrotor UAV on a Moving Target Using Low cost Sensors written by Kevin Ling and published by . This book was released on 2014 with total page 59 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the use of unmanned aerial vehicles (UAVs) becoming more widespread, a need for precise autonomous landings has arisen. In the maritime setting, precise autonomous landings will help to provide a safe way to recover UAVs deployed from a ship. On land, numerous applications have been proposed for UAV and unmanned ground vehicle (UGV) teams where autonomous docking is required so that the UGVs can either recover or service a UAV in the field. Current state of the art approaches to solving the problem rely on expensive inertial measurement sensors and RTK or differential GPS systems. However, such a solution is not practical for many UAV systems. A framework to perform precision landings on a moving target using low-cost sensors is proposed in this thesis. Vision from a downward facing camera is used to track a target on the landing platform and generate high quality relative pose estimates. The landing procedure consists of three stages. First, a rendezvous stage commands the quadrotor on a path to intercept the target. A target acquisition stage then ensures that the quadrotor is tracking the landing target. Finally, visual measurements of the relative pose to the landing target are used in the target tracking stage where control and estimation are performed in a body-planar frame, without the use of GPS or magnetometer measurements. A comprehensive overview of the control and estimation required to realize the three stage landing approach is presented. Critical parts of the landing framework were implemented on an AscTec Pelican testbed. The AprilTag visual fiducial system is chosen for use as the landing target. Implementation details to improve the AprilTag detection pipeline are presented. Simulated and experimen- tal results validate key portions of the landing framework. The novel relative estimation scheme is evaluated in an indoor positioning system. Tracking and landing on a moving target is demonstrated in an indoor environment. Outdoor tests also validate the target tracking performance in the presence of wind.

Book Multi rotor Platform Based UAV Systems

Download or read book Multi rotor Platform Based UAV Systems written by Franck Cazaurang and published by ISTE Press - Elsevier. This book was released on 2020-03-17 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-rotor Platform Based UAV Systems provides an excellent opportunity for experiential learning, capability augmentation and confidence-building for senior level undergraduates, entry-level graduates, engineers working in government agencies, and industry involved in UAV R&D. Topics in this book include an introduction to VTOL multi-copter UAV platforms, UAV system architecture, integration in the national airspace, including UAV classification and associated missions, regulation and safety, certification and air traffic management, integrated mission planning, including autonomous fault tolerant path planning and vision based auto landing systems, flight mechanics and stability, dynamic modeling and flight controller development. Other topics covered include sense, detect and avoid systems, flight testing, including safety assessment instrumentation and data acquisition telemetry, synchronization data fusion, the geo-location of identified targets, and much more. Provides an excellent opportunity for experiential learning, capability augmentation and confidence building for senior level undergraduates, entry-level graduates and engineers working in government, and industry involved in UAV R&D Includes MATLAB/SIMULINK computational tools and off-the-shelf hardware implementation tutorials Offers a student centered approach Provides a quick and efficient means to conceptualize, design, synthesize and analyze using modeling and simulations Offers international perspective and appeal for engineering students and professionals

Book Eyes in the Sky

    Book Details:
  • Author : United States. Congress. House. Committee on the Judiciary. Subcommittee on Crime, Terrorism, Homeland Security, and Investigations
  • Publisher :
  • Release : 2013
  • ISBN :
  • Pages : 78 pages

Download or read book Eyes in the Sky written by United States. Congress. House. Committee on the Judiciary. Subcommittee on Crime, Terrorism, Homeland Security, and Investigations and published by . This book was released on 2013 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt: