EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Viscous And Relaxational Regularizations Of Hyperbolic Conservation Laws  to 10  Pages 11 to 20  Pages 21 to 30  Pages 31 to 40  Pages 41 to 50  Pages 51 to 60  Pages 61 to 70  Pages 71 to 80  Pages 81 to 83

Download or read book Viscous And Relaxational Regularizations Of Hyperbolic Conservation Laws to 10 Pages 11 to 20 Pages 21 to 30 Pages 31 to 40 Pages 41 to 50 Pages 51 to 60 Pages 61 to 70 Pages 71 to 80 Pages 81 to 83 written by Wei-Cheng Wang and published by . This book was released on 1997 with total page 83 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Distribution Of The Ground State Of Hill S Equation With Random Potential  to 10  Pages 11 to 20  Pages 21 to 30  Pages 31 to 40  Pages 41 to 50  Pages 51 to 60  Pages 61 to 70  Pages 71 to 80  Pages 81 to 89

Download or read book Distribution Of The Ground State Of Hill S Equation With Random Potential to 10 Pages 11 to 20 Pages 21 to 30 Pages 31 to 40 Pages 41 to 50 Pages 51 to 60 Pages 61 to 70 Pages 71 to 80 Pages 81 to 89 written by Santiago Cambronero and published by . This book was released on 1996 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Viscous and Relaxational Regularizations of Hyperbolic Conservation Laws

Download or read book Viscous and Relaxational Regularizations of Hyperbolic Conservation Laws written by Wei-Cheng Wang and published by . This book was released on 1997 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Volume Methods for Hyperbolic Problems

Download or read book Finite Volume Methods for Hyperbolic Problems written by Randall J. LeVeque and published by Cambridge University Press. This book was released on 2002-08-26 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, first published in 2002, contains an introduction to hyperbolic partial differential equations and a powerful class of numerical methods for approximating their solution, including both linear problems and nonlinear conservation laws. These equations describe a wide range of wave propagation and transport phenomena arising in nearly every scientific and engineering discipline. Several applications are described in a self-contained manner, along with much of the mathematical theory of hyperbolic problems. High-resolution versions of Godunov's method are developed, in which Riemann problems are solved to determine the local wave structure and limiters are then applied to eliminate numerical oscillations. These methods were originally designed to capture shock waves accurately, but are also useful tools for studying linear wave-propagation problems, particularly in heterogenous material. The methods studied are implemented in the CLAWPACK software package and source code for all the examples presented can be found on the web, along with animations of many of the simulations. This provides an excellent learning environment for understanding wave propagation phenomena and finite volume methods.

Book Advanced Numerical Approximation of Nonlinear Hyperbolic Equations

Download or read book Advanced Numerical Approximation of Nonlinear Hyperbolic Equations written by B. Cockburn and published by Springer. This book was released on 2006-11-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the texts of the four series of lectures presented by B.Cockburn, C.Johnson, C.W. Shu and E.Tadmor at a C.I.M.E. Summer School. It is aimed at providing a comprehensive and up-to-date presentation of numerical methods which are nowadays used to solve nonlinear partial differential equations of hyperbolic type, developing shock discontinuities. The most effective methodologies in the framework of finite elements, finite differences, finite volumes spectral methods and kinetic methods, are addressed, in particular high-order shock capturing techniques, discontinuous Galerkin methods, adaptive techniques based upon a-posteriori error analysis.

Book The Millennium Prize Problems

    Book Details:
  • Author : James Carlson
  • Publisher : American Mathematical Society, Clay Mathematics Institute
  • Release : 2023-09-14
  • ISBN : 1470474603
  • Pages : 185 pages

Download or read book The Millennium Prize Problems written by James Carlson and published by American Mathematical Society, Clay Mathematics Institute. This book was released on 2023-09-14 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: On August 8, 1900, at the second International Congress of Mathematicians in Paris, David Hilbert delivered his famous lecture in which he described twenty-three problems that were to play an influential role in mathematical research. A century later, on May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute (CMI) announced the creation of a US$7 million prize fund for the solution of seven important classic problems which have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize Problems were selected by the founding Scientific Advisory Board of CMI—Alain Connes, Arthur Jaffe, Andrew Wiles, and Edward Witten—after consulting with other leading mathematicians. Their aim was somewhat different than that of Hilbert: not to define new challenges, but to record some of the most difficult issues with which mathematicians were struggling at the turn of the second millennium; to recognize achievement in mathematics of historical dimension; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; and to emphasize the importance of working towards a solution of the deepest, most difficult problems. The present volume sets forth the official description of each of the seven problems and the rules governing the prizes. It also contains an essay by Jeremy Gray on the history of prize problems in mathematics.

Book Handbook of Mathematical Fluid Dynamics

Download or read book Handbook of Mathematical Fluid Dynamics written by S. Friedlander and published by Gulf Professional Publishing. This book was released on 2003-03-27 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.

Book Stochastic Analysis and Applications

Download or read book Stochastic Analysis and Applications written by Fred Espen Benth and published by Springer Science & Business Media. This book was released on 2007-04-24 with total page 672 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Abel Symposium 2005 was organized as a tribute to the work of Kiyosi Ito on the occasion of his 90th birthday. Distinguished researchers from all over presented the newest developments within the exciting and fast growing field of stochastic analysis. This volume combines both papers from the invited speakers and contributions by the presenting lecturers. In addition, it includes the Memoirs that Kiyoshi Ito wrote for this occasion.

Book Hyperbolic Problems

Download or read book Hyperbolic Problems written by American Institute of Mathematical Sciences and published by . This book was released on 2014 with total page 1069 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Applied Analysis

Download or read book Advances in Applied Analysis written by Sergei V. Rogosin and published by Springer Science & Business Media. This book was released on 2012-08-21 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains survey papers based on the lectures presented at the 3rd International Winter School “Modern Problems of Mathematics and Mechanics” held in January 2010 at the Belarusian State University, Minsk. These lectures are devoted to different problems of modern analysis and its applications. An extended presentation of modern problems of applied analysis will enable the reader to get familiar with new approaches of mostly interdisciplinary character. The results discussed are application oriented and present new insight into applied problems of growing importance such as applications to composite materials, anomalous diffusion, and fluid dynamics.

Book Recent Advances in Radial Basis Function Collocation Methods

Download or read book Recent Advances in Radial Basis Function Collocation Methods written by Wen Chen and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s problems. This book is intended to meet this need. Prof. Wen Chen and Dr. Zhuo-Jia Fu work at Hohai University. Prof. C.S. Chen works at the University of Southern Mississippi.

Book Flowing Matter

    Book Details:
  • Author : Federico Toschi
  • Publisher : Springer Nature
  • Release : 2019-09-25
  • ISBN : 3030233707
  • Pages : 309 pages

Download or read book Flowing Matter written by Federico Toschi and published by Springer Nature. This book was released on 2019-09-25 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena. Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents. Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter. This book is the legacy of the COST Action MP1305 “Flowing Matter”.

Book Introduction to Implicit Surfaces

Download or read book Introduction to Implicit Surfaces written by Jules Bloomenthal and published by Morgan Kaufmann. This book was released on 1997-08 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implicit surfaces offer special effects animators, graphic designers, CAD engineers, graphics students, and hobbyists a new range of capabilities for the modeling of complex geometric objects. In contrast to traditional parametric surfaces, implicit surfaces can easily describe smooth, intricate, and articulatable shapes. These powerful yet easily understood surfaces are finding use in a growing number of graphics applications. This comprehensive introduction develops the fundamental concepts and techniques of implicit surface modeling, rendering, and animating in terms accessible to anyone with a basic background in computer graphics. + provides a thorough overview of implicit surfaces with a focus on their applications in graphics + explains the best methods for designing, representing, and visualizing implicit surfaces + surveys the latest research With contributions from seven graphics authorities, this innovative guide establishes implicit surfaces as a powerful and practical tool for animation and rendering.

Book Elements of Continuum Mechanics and Conservation Laws

Download or read book Elements of Continuum Mechanics and Conservation Laws written by S.K. Godunov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Elements of Continuum Mechanics and Conservation Laws presents a systematization of different models in mathematical physics, a study of the structure of conservation laws, thermodynamical identities, and connection with criteria for well-posedness of the corresponding mathematical problems. The theory presented in this book stems from research carried out by the authors concerning the formulations of differential equations describing explosive deformations of metals. In such processes, elasticity equations are used in some zones, whereas hydrodynamics equations are stated in other zones. Plastic deformations appear in transition zones, which leads to residual stresses. The suggested model contains some relaxation terms which simulate these plastic deformations. Certain laws of thermodynamics are used in order to describe and study differential equations simulating the physical processes. This leads to the special formulation of differential equations using generalized thermodynamical potentials.

Book Uncertainty Quantification for Hyperbolic and Kinetic Equations

Download or read book Uncertainty Quantification for Hyperbolic and Kinetic Equations written by Shi Jin and published by Springer. This book was released on 2018-03-20 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.

Book Implicit Large Eddy Simulation

Download or read book Implicit Large Eddy Simulation written by Fernando F. Grinstein and published by Cambridge University Press. This book was released on 2007-07-30 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical simulation of turbulent flows is a subject of great practical importance to scientists and engineers. The difficulty in achieving predictive simulations is perhaps best illustrated by the wide range of approaches that have been developed and are still being used by the turbulence modeling community. In this book the authors describe one of these approaches, Implicit Large Eddy Simulation (ILES). ILES is a relatively new approach that combines generality and computational efficiency with documented success in many areas of complex fluid flow. This book synthesizes the theoretical basis of the ILES methodology and reviews its accomplishments. ILES pioneers and lead researchers combine here their experience to present a comprehensive description of the methodology. This book should be of fundamental interest to graduate students, basic research scientists, as well as professionals involved in the design and analysis of complex turbulent flows.

Book Introduction to the H principle

Download or read book Introduction to the H principle written by Y. Eliashberg and published by American Mathematical Soc.. This book was released on with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most powerful modern methods of solving partial differential equations is Gromov's $h$-principle. It has also been, traditionally, one of the most difficult to explain. This book is the first broadly accessible exposition of the principle and its applications. The essence of the $h$-principle is the reduction of problems involving partial differential relations to problems of a purely homotopy-theoretic nature. Two famous examples of the $h$-principle are the Nash-Kuiper$C1$-isometric embedding theory in Riemannian geometry and the Smale-Hirsch immersion theory in differential topology. Gromov transformed these examples into a powerful general method for proving the $h$-principle. Both of these examples and their explanations in terms of the $h$-principle arecovered in detail in the book. The authors cover two main embodiments of the principle: holonomic approximation and convex integration. The first is a version of the method of continuous sheaves. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. There are, naturally, many connections to symplectic and contact geometry. The book would be an excellent text for a graduate course on modern methods for solvingpartial differential equations. Geometers and analysts will also find much value in this very readable exposition of an important and remarkable technique.