Download or read book Passive and Active Structural Vibration Control in Civil Engineering written by T.T. Soong and published by Springer. This book was released on 2014-05-04 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Base isolation, passive energy dissipation and active control represent three innovative technologies for protection of structures under environmental loads. Increasingly, they are being applied to the design of new structures or to the retrofit of existing structures against wind, earthquakes and other external loads. This book, with contributions from leading researchers from Japan, Europe, and the United States, presents a balanced view of current research and world-wide development in this exciting and fast expanding field. Basic principles as well as practical design and implementational issues associated with the application of base isolation systems and passive and active control devices to civil engineering structures are carefully addressed. Examples of structural applications are presented and extensively discussed.
Download or read book Vibration Mitigation Systems in Structural Engineering written by Okyay Altay and published by CRC Press. This book was released on 2021-08-15 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book presents a comprehensive coverage of the area of vibration control of civil structures subjected to different types of loading while using passive, semi-active, and/or active controls. Presents the theoretical governing equations as well as the associated design guides of various vibration control mitigation approaches. Discusses structural monitoring aspects such as sensor technology, system identification and signal processing topics. Reviews structural control aspects, such as algorithms. Includes solved examples utilizing MATLAB®/SIMULINK® with source codes of the calculation examples and design tool set.
Download or read book Intelligent Vibration Control in Civil Engineering Structures written by Zhao-Dong Xu and published by Academic Press. This book was released on 2016-11-02 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent Vibration Control in Civil Engineering Structures provides readers with an all-encompassing view of the theoretical studies, design methods, real-world implementations, and applications relevant to the topic The book focuses on design and property tests on different intelligent control devices, innovative control strategies, analysis examples for structures with intelligent control devices, and designs and tests for intelligent controllers. - Focuses on the principles, methods, and applications of intelligent vibration control in civil engineering - Covers intelligent control, including active and semi-active control - Includes comprehensive contents, such as design and properties of different intelligent control devices, control strategies, and dynamic analysis, intelligent controller design, numerical examples, and experimental data
Download or read book Vibration Control for Building Structures written by Aiqun Li and published by Springer Nature. This book was released on 2020-03-11 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive introduction to the field of structural vibration reduction control, but may also be used as a reference source for more advanced topics. The content is divided into four main parts: the basic principles of structural vibration reduction control, structural vibration reduction devices, structural vibration reduction design methods, and structural vibration reduction engineering practices. As the book strikes a balance between theoretical and practical aspects, it will appeal to researchers and practicing engineers alike, as well as graduate students.
Download or read book Structural Vibration written by C. Beards and published by Elsevier. This book was released on 1996-05-31 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many structures suffer from unwanted vibrations and, although careful analysis at the design stage can minimise these, the vibration levels of many structures are excessive. In this book the entire range of methods of control, both by damping and by excitation, is described in a single volume.Clear and concise descriptions are given of the techniques for mathematically modelling real structures so that the equations which describe the motion of such structures can be derived. This approach leads to a comprehensive discussion of the analysis of typical models of vibrating structures excited by a range of periodic and random inputs. Careful consideration is also given to the sources of excitation, both internal and external, and the effects of isolation and transmissability. A major part of the book is devoted to damping of structures and many sources of damping are considered, as are the ways of changing damping using both active and passive methods. The numerous worked examples liberally distributed throughout the text, amplify and clarify the theoretical analysis presented. Particular attention is paid to the meaning and interpretation of results, further enhancing the scope and applications of analysis. Over 80 problems are included with answers and worked solutions to most. This book provides engineering students, designers and professional engineers with a detailed insight into the principles involved in the analysis and damping of structural vibration while presenting a sound theoretical basis for further study.Suitable for students of engineering to first degree level and for designers and practising engineersNumerous worked examplesClear and easy to follow
Download or read book Vibration Control of Active Structures written by A. Preumont and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.
Download or read book Structural Dynamics and Vibration in Practice written by Douglas Thorby and published by Butterworth-Heinemann. This book was released on 2008-01-08 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This straightforward text, primer and reference introduces the theoretical, testing and control aspects of structural dynamics and vibration, as practised in industry today. Written by an expert engineer of over 40 years experience, the book comprehensively opens up the dynamic behavior of structures and provides engineers and students with a comprehensive practice based understanding of the key aspects of this key engineering topic. Written with the needs of engineers of a wide range of backgrounds in mind, this book will be a key resource for those studying structural dynamics and vibration at undergraduate level for the first time in aeronautical, mechanical, civil and automotive engineering. It will be ideal for laboratory classes and as a primer for readers returning to the subject, or coming to it fresh at graduate level. It is a guide for students to keep and for practicing engineers to refer to: its worked example approach ensures that engineers will turn to Thorby for advice in many engineering situations. - Presents students and practitioners in all branches of engineering with a unique structural dynamics resource and primer, covering practical approaches to vibration engineering while remaining grounded in the theory of the topic - Written by a leading industry expert, with a worked example lead approach for clarity and ease of understanding - Makes the topic as easy to read as possible, omitting no steps in the development of the subject; covers computer based techniques and finite elements
Download or read book Experimental Vibration Analysis for Civil Structures written by Joel P. Conte and published by Springer. This book was released on 2017-10-11 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume presents selected contributions from the International Conference on Experimental Vibration Analysis of Civil Engineering Structures held in San Diego, California in 2017 (EVACES2017). The event brought together engineers, scientists, researchers, and practitioners, providing a forum for discussing and disseminating the latest developments and achievements in all major aspects of dynamic testing for civil engineering structures, including instrumentation, sources of excitation, data analysis, system identification, monitoring and condition assessment, in-situ and laboratory experiments, codes and standards, and vibration mitigation.
Download or read book Uncertainty Modeling in Vibration Control and Fuzzy Analysis of Structural Systems written by Bilal M. Ayyub and published by World Scientific. This book was released on 1997 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering systems. They deal with modeling for vibration, control, and fuzzy analysis of structural and mechanical systems under uncertain conditions. The book designed for readers who are familiar with the fundamentals and wish to study a particular topic or use the book as an authoritative reference. It gives readers a sophisticated toolbox for tackling modeling problems in mechanical and structural systems in real-world situations. The book is part of a series on Stability, Vibration and Control of Structures, and provides vital information in these areas.
Download or read book Control of Noise and Structural Vibration written by Qibo Mao and published by Springer Science & Business Media. This book was released on 2013-06-02 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double walls. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Positive position feedback (PPF) and multimode control are also described in the context of loudspeaker–duct and loudspeaker–microphone models. The design of various components is detailed including the analog circuit for PPF, adaptive (semi-active) Helmholtz resonators and shunt piezoelectric circuits for noise and vibration suppression. The text makes extensive use of MATLAB® examples and these can be simulated using files available for download from the book’s webpage at springer.com. End-of-chapter exercises will help readers to assimilate the material as they progress through the book. Control of Noise and Structural Vibration will be of considerable interest to the student of vibration and noise control and also to academic researchers working in the field. It’s tutorial features will help practitioners who wish to update their knowledge with self-study.
Download or read book Design Optimization of Active and Passive Structural Control Systems written by Nikos D. Lagaros and published by . This book was released on 2013 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book addresses the design optimization of active and passive control systems including earthquake engineering and tuned mass damper research topics and their link"--
Download or read book Active and Passive Vibration Control of Structures written by Peter Hagedorn and published by Springer. This book was released on 2014-10-20 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Active and Passive Vibration Control of Structures form an issue of very actual interest in many different fields of engineering, for example in the automotive and aerospace industry, in precision engineering (e.g. in large telescopes), and also in civil engineering. The papers in this volume bring together engineers of different background, and it fill gaps between structural mechanics, vibrations and modern control theory. Also links between the different applications in structural control are shown.
Download or read book Insights and Innovations in Structural Engineering Mechanics and Computation written by Alphose Zingoni and published by CRC Press. This book was released on 2016-11-25 with total page 3395 pages. Available in PDF, EPUB and Kindle. Book excerpt: Insights and Innovations in Structural Engineering, Mechanics and Computation comprises 360 papers that were presented at the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016, Cape Town, South Africa, 5-7 September 2016). The papers reflect the broad scope of the SEMC conferences, and cover a wide range of engineering structures (buildings, bridges, towers, roofs, foundations, offshore structures, tunnels, dams, vessels, vehicles and machinery) and engineering materials (steel, aluminium, concrete, masonry, timber, glass, polymers, composites, laminates, smart materials). Some contributions present the latest insights and new understanding on (i) the mechanics of structures and systems (dynamics, vibration, seismic response, instability, buckling, soil-structure interaction), and (ii) the mechanics of materials and fluids (elasticity, plasticity, fluid-structure interaction, flow through porous media, biomechanics, fracture, fatigue, bond, creep, shrinkage). Other contributions report on (iii) recent advances in computational modelling and testing (numerical simulations, finite-element modeling, experimental testing), and (iv) developments and innovations in structural engineering (planning, analysis, design, construction, assembly, maintenance, repair and retrofitting of structures). Insights and Innovations in Structural Engineering, Mechanics and Computation is particularly of interest to civil, structural, mechanical, marine and aerospace engineers. Researchers, developers, practitioners and academics in these disciplines will find the content useful. Short versions of the papers, intended to be concise but self-contained summaries of the full papers, are collected in the book, while the full versions of the papers are on the accompanying CD.
Download or read book Experimental Vibration Analysis for Civil Structures written by Jian Zhang and published by CRC Press. This book was released on 2020-11-04 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control covers a wide range of topics in the areas of vibration testing, instrumentation, and analysis of civil engineering and critical infrastructure. It explains how recent research, development, and applications in experimental vibration analysis of civil engineering structures have progressed significantly due to advancements in the fields of sensor and testing technologies, instrumentation, data acquisition systems, computer technology, computational modeling and simulation of large and complex civil infrastructure systems. The book also examines how cutting-edge artificial intelligence and data analytics can be applied to infrastructure systems. Features: Explains how recent technological developments have resulted in addressing the challenge of designing more resilient infrastructure Examines numerous research studies conducted by leading scholars in the field of infrastructure systems and civil engineering Presents the most emergent fields of civil engineering design, such as data analytics and Artificial Intelligence for the analysis and performance assessment of infrastructure systems and their resilience Emphasizes the importance of an interdisciplinary approach to develop the modeling, analysis, and experimental tools for designing more resilient and intelligent infrastructures Appropriate for practicing engineers and upper-level students, Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control serves as a strategic roadmap for further research in the field of vibration testing and instrumentation of infrastructure systems.
Download or read book Nonlinear Vibration with Control written by David Wagg and published by Springer. This book was released on 2014-11-03 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive discussion of nonlinear multi-modal structural vibration problems, and shows how vibration suppression can be applied to such systems by considering a sample set of relevant control techniques. It covers the basic principles of nonlinear vibrations that occur in flexible and/or adaptive structures, with an emphasis on engineering analysis and relevant control techniques. Understanding nonlinear vibrations is becoming increasingly important in a range of engineering applications, particularly in the design of flexible structures such as aircraft, satellites, bridges, and sports stadia. There is an increasing trend towards lighter structures, with increased slenderness, often made of new composite materials and requiring some form of deployment and/or active vibration control. There are also applications in the areas of robotics, mechatronics, micro electrical mechanical systems, non-destructive testing and related disciplines such as structural health monitoring. Two broader themes cut across these application areas: (i) vibration suppression – or active damping – and, (ii) adaptive structures and machines. In this expanded 2nd edition, revisions include: An additional section on passive vibration control, including nonlinear vibration mounts. A more in-depth description of semi-active control, including switching and continuous schemes for dampers and other semi-active systems. A complet e reworking of normal form analysis, which now includes new material on internal resonance, bifurcation of backbone curves and stability analysis of forced responses. Further analysis of the nonlinear dynamics of cables including internal resonance leading to whirling. Additional material on the vibration of systems with impact friction. The book is accessible to practitioners in the areas of application, as well as students and researchers working on related topics. In particular, the aim is to introduce the key concepts of nonlinear vibration to readers who have an understanding of linear vibration and/or linear control, but no specialist knowledge in nonlinear dynamics or nonlinear control.
Download or read book Optimization of Tuned Mass Dampers written by Gebrail Bekdaş and published by Springer Nature. This book was released on 2022-04-07 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a timely book to summarize the latest developments in the optimization of tuned mass dampers covering all classical approaches and new trends including metaheuristic algorithms. Also, artificial intelligence and machine learning methods are included to predict optimum results by skipping long optimization processes. Another difference and advantage of the book are to provide chapters about several types of control types including passive tuned mass dampers, active tuned mass dampers, tuned liquid dampers, tuned liquid column dampers and inerter dampers. Tuned mass dampers (TMDs) are vibration absorber devices used in all types of mechanic systems. The key factor in the design is an effective tuning of TMDs for the desired performance. In practice, several high-rise structures and bridges were designed by including TMDs. Also, TMDs were installed after the construction of the structures after several negative experiences resulting from the disturbing sway of the structures. In optimum design, several closed-form expressions have been proposed for optimum frequency and damping ratio of TMDs, but the exact optimization requires iterative optimization approaches. The current trend is to use evolutionary algorithms and metaheuristic optimization methods to reach the goal.
Download or read book Structural Control for Civil and Infrastructure Engineering written by Fabio Casciati and published by World Scientific. This book was released on 2001 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Structural control represents a high technology proposal for civil engineering innovation. This book collects the invited papers presented at the 3rd International Workshop on Structural Control. The geographical coverage and the high quality of the invited speaker's contributions make the book a unique update in the areas of intelligent structures, structural control and smart materials for civil and infrastructure engineers. Contents: An Identification Algorithm for Feedback Active Control (N D Anh); Application of Control Techniques to Masonry and Monumental Constructions (A Baratta et al.); Monitoring of Infrastructures in the Marine Environment (A Del Grosso); Health Monitoring and Optimum Maintenance Programs for Structures in Seismic Zones (L Esteva & E Heredia-Zavoni); Outline of Safety Evaluation of Structural Response-Control Buildings and Smart Structural Systems as Future Trends (K Yoshikazu & T Hiroyuki); Recent Developments in Smart Structures Research in India (S Narayanan & V Balamurugan); Perspective of Application of Active Damping of Cable Structures (A Preumont & F Bossens); Parametric and Nonparametric Adaptive Identification of Nonlinear Structural Systems (A W Smyth et al.); Active Control Requirements in Railway Projects (H Wenzel); and other papers. Readership: Civil engineers and scientists working in the areas of intelligent systems and smart materials.