EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Verification of the Defense Waste Processing Facility s  DWPF  Process Digestion Method for the Sludge Batch 7A Qualification Sample

Download or read book Verification of the Defense Waste Processing Facility s DWPF Process Digestion Method for the Sludge Batch 7A Qualification Sample written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

Book Verification Of The Defense Waste Processing Facility s  DWPF  Process Digestion Methods For The Sludge Batch 8 Qualification Sample

Download or read book Verification Of The Defense Waste Processing Facility s DWPF Process Digestion Methods For The Sludge Batch 8 Qualification Sample written by and published by . This book was released on 2013 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report contains the results and comparison of data generated from inductively coupled plasma - atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition.

Book VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 6 QUALIFICATION SAMPLE

Download or read book VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 6 QUALIFICATION SAMPLE written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) confirms applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. 1 DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem (CC) Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICPAES). In addition to the CC method confirmation, the DWPF lab's mercury (Hg) digestion method was also evaluated for applicability to SB6 (see DWPF procedure 'Mercury System Operating Manual', Manual: SW4-15.204. Section 6.1, Revision 5, Effective date: 12-04-03). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 6 (SB6) SRAT Receipt and SB6 SRAT Product samples. For validation of the DWPF lab's Hg method, only SRAT receipt material was used and compared to AR digestion results. The SB6 SRAT Receipt and SB6 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB6 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 5 (SB5), to form the SB6 Blend composition. In addition to the 16 elements currently measured by the DWPF, this report includes Hg and thorium (Th) data (Th comprising (almost equal to)2.5 - 3 Wt% of the total solids in SRAT Receipt and SRAT Product, respectively) and provides specific details of ICP-AES analysis of Th. Thorium was found to interfere with the U 367.007 nm emission line, and an inter-element correction (IEC) had to be applied to U data, which is also discussed. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element without support from XRD analysis or used to estimate ratios of compounds in the sludge.

Book DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE

Download or read book DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem Method, see Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 5 (SB5) SRAT Receipt and SB5 SRAT Product samples. The SB5 SRAT Receipt and SB5 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB5 Batch composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 4 (SB4), to form the SB5 Blend composition. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element in the sludge or used to estimate ratios of compounds in the sludge. A statistical comparison of the data validates the use of the DWPF CC method for SB5 Batch composition. However, the difficulty that was encountered in using the CC method for SB4 brings into question the adequacy of CC for the SB5 Blend. Also, it should be noted that visible solids remained in the final diluted solutions of all samples digested by this method at SRNL (8 samples total), which is typical for the DWPF CC method but not seen in the other methods. Recommendations to the DWPF for application to SB5 based on studies to date: (1) A dissolution study should be performed on the WAPS sample by SRNL which consists of the final composition of the sludge (the SB5 Blend); (2) Given the heel of SB4 in Tank 40, the DWPF lab should monitor the aluminum concentration in the first 10 SRAT Receipt batches of SB5 using both CC and sodium peroxide/hydroxide fusion to evaluate the adequacy of aluminum recovery by the CC method for this sludge batch; and (3) SRNL and the DWPF lab should investigate if comparisons between the elemental concentrations of the SME product glass (adjusted for frit addition) obtained by the mixed acid and peroxide fusion digestion and the SRAT Receipt and SRAT Product elemental concentrations obtained via the DWPF CC method provide insight into the adequacy of the CC method for analysis of the SRAT Product. The DWPF lab would need to calcine the SRAT product at 1050 C for the best comparison. If a consistent difference in elemental concentrations is revealed, another type of digestion (i.e. sodium peroxide/hydroxide fusion) should be used to determine the concentration of the element in question. Particular emphasis should be placed on monitoring the aluminum concentration in SB5.

Book OVERVIEW OF TESTING TO SUPPORT PROCESSING OF SLUDGE BATCH 4 IN THE DEFENSE WASTE PROCESSING FACILITY

Download or read book OVERVIEW OF TESTING TO SUPPORT PROCESSING OF SLUDGE BATCH 4 IN THE DEFENSE WASTE PROCESSING FACILITY written by C. Herman and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Defense Waste Processing Facility (DWPF) at the Savannah River Site began processing of its third sludge batch in March 2004. To avoid a feed outage in the facility, the next sludge batch will have to be prepared and ready for transfer to the DWPF by the end of 2006. The next sludge batch, Sludge Batch 4 (SB4), will consist of a significant volume of HM-type sludge. HM-type sludge is very high in aluminum compared to the mostly Purex-type sludges that have been processed to date. The Savannah River National Laboratory (SRNL) has been working with Liquid Waste Operations to define the sludge preparation plans and to perform testing to support qualification and processing of SB4. Significant challenges have arisen during SB4 preparation and testing to include poor sludge settling behavior and lower than desired projected melt rates. An overview of the testing activities is provided.

Book Monnoyage  contenant dix neuf planches

Download or read book Monnoyage contenant dix neuf planches written by and published by . This book was released on 19?? with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Summary Report For The Analysis Of The Sludge Batch 7b  Macrobatch 9  DWPF Pour Stream Glass Sample For Canister S04023

Download or read book Summary Report For The Analysis Of The Sludge Batch 7b Macrobatch 9 DWPF Pour Stream Glass Sample For Canister S04023 written by and published by . This book was released on 2013 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to comply with the Defense Waste Processing Facility (DWPF) Waste Form Compliance Plan for Sluldge Batch 7b, Savannah River National Laboratory (SRNL) personnel characterized the Defense Waste Processing Facility (DWPF) pour stream (PS) glass sample collected while filling canister S04023. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass.

Book SUMMARY REPORT FOR THE ANALYSIS OF THE SLUDGE BATCH 7A  MACROBATCH 8  DWPF POUR STREAM GLASS SAMPLE FOR CANISTER S03619

Download or read book SUMMARY REPORT FOR THE ANALYSIS OF THE SLUDGE BATCH 7A MACROBATCH 8 DWPF POUR STREAM GLASS SAMPLE FOR CANISTER S03619 written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to comply with the Waste Acceptance Specifications in Sludge Batch 7a (Macrobatch 8), Savannah River National Laboratory personnel characterized the Defense Waste Processing Facility (DWPF) pour stream glass sample collected while filling canister S03619. This report summarizes the results of the compositional analysis for reportable oxides and radionuclides, and the normalized Product Consistency Test (PCT) results. The PCT responses indicate that the DWPF produced glass that is significantly more durable than the Environmental Assessment glass. Results and further details are documented in 'Analysis of DWPF Sludge Batch 7a (Macrobatch 8) Pour Stream Samples, ' SRNL-STI-2012-00017.

Book Results of the Tank 40H Sludge Batch 2 Final Wash  Post Decant  Sample HTF E 133

Download or read book Results of the Tank 40H Sludge Batch 2 Final Wash Post Decant Sample HTF E 133 written by and published by . This book was released on 2002 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Results from Sample HTF-E-133 pulled from Tank 40H after the fifth wash (post-decant) indicate that the supernate sodium concentration is 0.53 M versus a goal concentration of 0.50 M. This sodium concentration is also below the 0.56 M Na+ supernate concentration obtained in the Savannah River Technology Center's (SRTC) wash of the Sludge Batch 2 qualification sample. This assures that the product slurry is within the bounds SRTC used in qualifying Sludge Batch 2. Weight percent solids and density results are also presented herein. This will allow verification that the solids fraction is within the acceptable range for Defense Waste Processing Facility (DWPF) productivity and for transfer of the slurry to the DWPF.

Book ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE

Download or read book ELIMINATION OF THE CHARACTERIZATION OF DWPF POUR STREAM SAMPLE AND THE GLASS FABRICATION AND TESTING OF THE DWPF SLUDGE BATCH QUALIFICATION SAMPLE written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A recommendation to eliminate all characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification sample was made by a Six-Sigma team chartered to eliminate non-value-added activities for the Defense Waste Processing Facility (DWPF) sludge batch qualification program and is documented in the report SS-PIP-2006-00030. That recommendation was supported through a technical data review by the Savannah River National Laboratory (SRNL) and is documented in the memorandums SRNL-PSE-2007-00079 and SRNL-PSE-2007-00080. At the time of writing those memorandums, the DWPF was processing sludge-only waste but, has since transitioned to a coupled operation (sludge and salt). The SRNL was recently tasked to perform a similar data review relevant to coupled operations and re-evaluate the previous recommendations. This report evaluates the validity of eliminating the characterization of pour stream glass samples and the glass fabrication and Product Consistency Test (PCT) of the sludge batch qualification samples based on sludge-only and coupled operations. The pour stream sample has confirmed the DWPF's ability to produce an acceptable waste form from Slurry Mix Evaporator (SME) blending and product composition/durability predictions for the previous sixteen years but, ultimately the pour stream analysis has added minimal value to the DWPF's waste qualification strategy. Similarly, the information gained from the glass fabrication and PCT of the sludge batch qualification sample was determined to add minimal value to the waste qualification strategy since that sample is routinely not representative of the waste composition ultimately processed at the DWPF due to blending and salt processing considerations. Moreover, the qualification process has repeatedly confirmed minimal differences in glass behavior from actual radioactive waste to glasses fabricated from simulants or batch chemicals. In contrast, the variability study has significantly added value to the DWPF's qualification strategy. The variability study has evolved to become the primary aspect of the DWPF's compliance strategy as it has been shown to be versatile and capable of adapting to the DWPF's various and diverse waste streams and blending strategies. The variability study, which aims to ensure durability requirements and the PCT and chemical composition correlations are valid for the compositional region to be processed at the DWPF, must continue to be performed. Due to the importance of the variability study and its place in the DWPF's qualification strategy, it will also be discussed in this report. An analysis of historical data and Production Records indicated that the recommendation of the Six Sigma team to eliminate all characterization of pour stream glass samples and the glass fabrication and PCT performed with the qualification glass does not compromise the DWPF's current compliance plan. Furthermore, the DWPF should continue to produce an acceptable waste form following the remaining elements of the Glass Product Control Program; regardless of a sludge-only or coupled operations strategy. If the DWPF does decide to eliminate the characterization of pour stream samples, pour stream samples should continue to be collected for archival reasons, which would allow testing to be performed should any issues arise or new repository test methods be developed.

Book HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY

Download or read book HIGH LEVEL WASTE SLUDGE BATCH 4 VARIABILITY STUDY written by T. Tommy Edwards and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Defense Waste Processing Facility (DWPF) is preparing for vitrification of High Level Waste (HLW) Sludge Batch 4 (SB4) in early FY2007. To support this process, the Savannah River National Laboratory (SRNL) has provided a recommendation to utilize Frit 503 for vitrifying this sludge batch, based on the composition projection provided by the Liquid Waste Organization on June 22, 2006. Frit 418 was also recommended for possible use during the transition from SB3 to SB4. A critical step in the SB4 qualification process is to demonstrate the applicability of the durability models, which are used as part of the DWPF's process control strategy, to the glass system of interest via a variability study. A variability study is an experimentally-driven assessment of the predictability and acceptability of the quality of the vitrified waste product that is anticipated from the processing of a sludge batch. At the DWPF, the durability of the vitrified waste product is not directly measured. Instead, the durability is predicted using a set of models that relate the Product Consistency Test (PCT) response of a glass to the chemical composition of that glass. In addition, a glass sample is taken during the processing of that sludge batch, the sample is transmitted to SRNL, and the durability is measured to confirm acceptance. The objective of a variability study is to demonstrate that these models are applicable to the glass composition region anticipated during the processing of the sludge batch - in this case the Frit 503 - SB4 compositional region. The success of this demonstration allows the DWPF to confidently rely on the predictions of the durability/composition models as they are used in the control of the DWPF process.

Book FRIT DEVELOPMENT FOR SLUDGE BATCH 6

Download or read book FRIT DEVELOPMENT FOR SLUDGE BATCH 6 written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Savannah River National Laboratory (SRNL) evaluated a large number of Sludge Batch 6 (SB6) composition projections to support frit optimization for SB6 vitrification at the Defense Waste Processing Facility (DWPF). The evaluations discussed in this report occurred over a period of about 4 months, and included about 40 composition projections, developed by both Savannah River Remediation (SRR) and SRNL. Paper study assessments were used to evaluate the sludge composition projections with arrays of potential frit compositions using the predictive models in the DWPF Product Composition Control System (PCCS). Both nominal sludge compositions and sludge compositions with anticipated compositional variation were considered. The model predictions were used to identify candidate frit compositions for each SB6 projection and to provide some guidance to SRR on washing and blending strategies for SB6 preparation. This report presents a chronological review of this process and summarizes the findings at each stage. Following initial feedback from this work, the number of washes in Tank 51 was reduced to increase the projected sodium concentration in SB6. Analyses of predicted frit performance before and after a potential decant of Tank 40 showed that the post-decant SB6 composition would be difficult to process with any frit composition and that this scenario should be avoided. Based on the most recent SB6 projections (February 2010 SB6 composition projections developed at SRNL using the measured SB6 qualification sample composition and the revised Tank Farm washing plan), Frit 418 appears to be viable for SB6 processing at a target waste loading of 36%. A Nominal Stage PCCS Measurement Acceptability Region (MAR) assessment gave projected operating windows of 25-41% waste loading, limited by predictions of nepheline crystallization. The projected operating window is reduced to 25-38% waste loading when anticipated compositional variation is considered, again limited by predictions of nepheline crystallization. Blend points between 62 and 40 inches of Sludge Batch 5 (SB5) heel in Tank 40 had no practical impact on the projected performance of Frit 418. This assessment is made from a paper study approach only and assumes that no decant of Tank 40 will occur during SB6 processing. A decant of Tank 40 would reduce the Na2O concentration in Tank 40 to a point where it would be very difficult to target a waste loading of 36% for SB6 with Frit 418. The performance of Frit 418 with SB6 is limited by predictions of nepheline crystallization, which is a durability limiting constraint. Alternatives to Frit 418 are available that can provide equivalent projected operating windows and are limited by process related constraints (i.e., liquidus temperature predictions) rather than durability limiting constraints. A separate memorandum has recently been issued that discusses the use of Frit 418 for SB6 vitrification. 1 potential differences in melt rate among these alternative frits will be discussed in a forthcoming technical report.

Book Sludge Batch 3 Qualification in the SRTC Shielded Cells

Download or read book Sludge Batch 3 Qualification in the SRTC Shielded Cells written by and published by . This book was released on 2004 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Defense Waste Processing Facility (DWPF) requested that a radioactive demonstration of the next batch of sludge slurry (Sludge Batch 3) be completed in the Shielded Cells Facility of the Savannah River Technology Center (SRTC). Sludge Batch 3 (SB3) consists of the heel in Tank 51, which included Plutonium (Pu) and Americium/Curium (Am/Cm); sludge slurry from Tank 7 (including sludge transferred into Tank 7 from Tanks 18 and 19); additional Pu transferred from H Canyon; a Neptunium (Np) transfer also from H Canyon; and the remaining Sludge Batch 2 material in Tank 40. Because the current contents of Tank 40 (Sludge Batch 2) have already been qualified, this qualification work did not include the contribution of Tank 40. Documented in this report are: preparation of a SB3 slurry using a Tank 51 sample from June 2003; a demonstration of the DWPF Sludge Receipt and Adjustment Tank (SRAT) cycle using SB3 slurry; a demonstration of the DWPF Slurry Mix Evaporator (SME) cycle using SRAT product; glass fabrication and subsequent chemical durability evaluation using SB3 material; and evaluation of adding formic acid to the SME cycle product.

Book Washing Demonstration Using Nonradioactive Simulated Tank 7 Sludge Slurry

Download or read book Washing Demonstration Using Nonradioactive Simulated Tank 7 Sludge Slurry written by J. M. Pareizs and published by . This book was released on 2003 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tank 7 will be processed as part of the next sludge batch in the Defense Waste Processing Facility. Prior to processing in DWPF, a sludge-slurry must be washed to adjust the sodium content and weight percent total solids.

Book DWPF SB6 INITIAL CPC FLOWSHEET TESTING SB6 1 TO SB6 4L TESTS OF SB6 A AND SB6 B SIMULANTS

Download or read book DWPF SB6 INITIAL CPC FLOWSHEET TESTING SB6 1 TO SB6 4L TESTS OF SB6 A AND SB6 B SIMULANTS written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Defense Waste Processing Facility (DWPF) will transition from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing in late fiscal year 2010. Tests were conducted using non-radioactive simulants of the expected SB6 composition to determine the impact of varying the acid stoichiometry during the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) processes. The work was conducted to meet the Technical Task Request (TTR) HLW/DWPF/TTR-2008-0043, Rev.0 and followed the guidelines of a Task Technical and Quality Assurance Plan (TT & QAP). The flowsheet studies are performed to evaluate the potential chemical processing issues, hydrogen generation rates, and process slurry rheological properties as a function of acid stoichiometry. These studies were conducted with the estimated SB6 composition at the time of the study. This composition assumed a blend of 101,085 kg of Tank 4 insoluble solids and 179,000 kg of Tank 12 insoluble solids. The current plans are to subject Tank 12 sludge to aluminum dissolution. Liquid Waste Operations assumed that 75% of the aluminum would be dissolved during this process. After dissolution and blending of Tank 4 sludge slurry, plans included washing the contents of Tank 51 to (almost equal to)1M Na. After the completion of washing, the plan assumes that 40 inches on Tank 40 slurry would remain for blending with the qualified SB6 material. There are several parameters that are noteworthy concerning SB6 sludge: (1) This is the second batch DWPF will be processing that contains sludge that has had a significant fraction of aluminum removed through aluminum dissolution; (2) The sludge is high in mercury, but the projected concentration is lower than SB5; (3) The sludge is high in noble metals, but the projected concentrations are lower than SB5; and(4) The sludge is high in U and Pu - components that are not added in sludge simulants. Six DWPF process simulations were completed in 4-L laboratory-scale equipment using two projections of the SB6 blend simulant composition (Tank 40 simulant after Tank 51 transfer is complete). The more washed simulant (SB6-A) had a set of four SRAT and SME simulations at varying acid stoichiometry levels (90%, 100%, 120% and 150%) using the Koopman Acid Prediction Calculation. Two additional SRAT simulations were made using SB6-B blend simulant at 100% and 120% of acid stoichiometry. SME cycles were noted performed for the SB6B simulants to allow the SRAT products to be used for melt rate testing.

Book REAL WASTE TESTING OF SLUDGE BATCH 5 MELTER FEED RHEOLOGY

Download or read book REAL WASTE TESTING OF SLUDGE BATCH 5 MELTER FEED RHEOLOGY written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Clogging of the melter feed loop at the Defense Waste Processing Facility (DWPF) has reduced the throughput of Sludge Batch 5 (SB5) processing. After completing a data review, DWPF attributed the clogging to the rheological properties of the Slurry Mix Evaporator (SME) project. The yield stress of the SB5 melter feed material was expected to be high, based on the relatively high pH of the SME product and the rheological results of a previous Chemical Process Cell (CPC) demonstration performed at the Savannah River National Laboratory (SRNL).