Download or read book Verification and Validation in Scientific Computing written by William L. Oberkampf and published by Cambridge University Press. This book was released on 2010-10-14 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.
Download or read book Validating Numerical Modelling in Geotechnical Engineering written by Ronald B. J. Brinkgreve and published by . This book was released on 2013 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations written by American Institute of Aeronautics and Astronautics and published by AIAA (American Institute of Aeronautics & Astronautics). This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document defines a number of key terms, discusses fundamental concepts, and specifies general procedures for conducting verification and validation of computational fluid dynamics simulations. It's goal is to provide a foundation for the major issues and concepts in verification and validation. However, it does not recommend standards in these areas because a number of important issues are not yet resolved.
Download or read book Computational Geomechanics written by Andrew H. C. Chan and published by John Wiley & Sons. This book was released on 2022-03-28 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: COMPUTATIONAL GEOMECHANICS The new edition of the first book to cover the computational dynamic aspects of geomechanics, now including more practical applications and up-to-date coverage of current research in the field Advances in computational geomechanics have dramatically improved understanding of the behavior of soils and the ability of engineers to design increasingly sophisticated constructions in the ground. When Professor Olek Zienkiewicz began the application of numerical approaches to solid dynamics at Swansea University, it became evident that realistic prediction of the behavior of soil masses could only be achieved if the total stress approaches were abandoned. Computational Geomechanics introduces the theory and application of Zienkiewicz’s computational approaches that remain the basis for work in the area of saturated and unsaturated soil to this day. Written by past students and colleagues of Professor Zienkiewicz, this extended Second Edition provides formulations for a broader range of problems, including failure load under static loading, saturated and unsaturated consolidation, hydraulic fracturing, and liquefaction of soil under earthquake loading. The internationally-recognized team of authors incorporates current computer technologies and new developments in the field, particularly in the area of partial saturation, as they guide readers on how to properly apply the formulation in their work. This one-of-a-kind volume: Explains the Biot-Zienkiewicz formulation for saturated and unsaturated soil Covers multiple applications to static and dynamic problems for saturated and unsaturated soil in areas such as earthquake engineering and fracturing of soils and rocks Features a completely new chapter on fast catastrophic landslides using depth integrated equations and smoothed particle hydrodynamics with applications Presents the theory of porous media in the saturated and unsaturated states to establish the foundation of the problem of soil mechanics Provides a quantitative description of soil behavior including simple plasticity models, generalized plasticity, and critical state soil mechanics Includes numerous questions, problems, hands-on experiments, applications to other situations, and example code for GeHoMadrid Computational Geomechanics: Theory and Applications, Second Edition is an ideal textbook for specialist and general geotechnical postgraduate courses, and a must-have reference for researchers in geomechanics and geotechnical engineering, for software developers and users of geotechnical finite element software, and for geotechnical analysts and engineers making use of the numerical results obtained from the Biot-Zienkiewicz formulation.
Download or read book Finite Element Analysis written by Barna Szabó and published by John Wiley & Sons. This book was released on 2021-06-22 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finite Element Analysis An updated and comprehensive review of the theoretical foundation of the finite element method The revised and updated second edition of Finite Element Analysis: Method, Verification, and Validation offers a comprehensive review of the theoretical foundations of the finite element method and highlights the fundamentals of solution verification, validation, and uncertainty quantification. Written by noted experts on the topic, the book covers the theoretical fundamentals as well as the algorithmic structure of the finite element method. The text contains numerous examples and helpful exercises that clearly illustrate the techniques and procedures needed for accurate estimation of the quantities of interest. In addition, the authors describe the technical requirements for the formulation and application of design rules. Designed as an accessible resource, the book has a companion website that contains a solutions manual, PowerPoint slides for instructors, and a link to finite element software. This important text: Offers a comprehensive review of the theoretical foundations of the finite element method Puts the focus on the fundamentals of solution verification, validation, and uncertainty quantification Presents the techniques and procedures of quality assurance in numerical solutions of mathematical problems Contains numerous examples and exercises Written for students in mechanical and civil engineering, analysts seeking professional certification, and applied mathematicians, Finite Element Analysis: Method, Verification, and Validation, Second Edition includes the tools, concepts, techniques, and procedures that help with an understanding of finite element analysis.
Download or read book Symbolic Algebraic Methods and Verification Methods written by Götz Alefeld and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: The usual "implementation” of real numbers as floating point numbers on existing computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. During the last years research in different areas has been intensified in order to overcome these problems. (LEDA-Library by K. Mehlhorn et al., "Exact arithmetic with real numbers” by A. Edalat et al., Symbolic algebraic methods, verification methods). The latest development is the combination of symbolic-algebraic methods and verification methods to so-called hybrid methods. – This book contains a collection of worked out talks on these subjects given during a Dagstuhl seminar at the Forschungszentrum für Informatik, Schlo€ Dagstuhl, Germany, presenting the state of the art.
Download or read book Model Validation and Uncertainty Quantification Volume 3 written by Robert Barthorpe and published by Springer. This book was released on 2017-06-07 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Validation and Uncertainty Quantification, Volume 3: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics, 2017, the third volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Model Validation and Uncertainty Quantification, including papers on: Uncertainty Quantification in Material Models Uncertainty Propagation in Structural Dynamics Practical Applications of MVUQ Advances in Model Validation & Uncertainty Quantification: Model Updating Model Validation & Uncertainty Quantification: Industrial Applications Controlling Uncertainty Uncertainty in Early Stage Design Modeling of Musical Instruments Overview of Model Validation and Uncertainty
Download or read book Numerical Validation in Current Hardware Architectures written by Annie A.M. Cuyt and published by Springer Science & Business Media. This book was released on 2009-04-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: The major emphasis of the Dagstuhl Seminar on “Numerical Validation in C- rent Hardware Architectures” lay on numerical validation in current hardware architecturesand softwareenvironments. The generalidea wasto bring together experts who are concerned with computer arithmetic in systems with actual processor architectures and scientists who develop, use, and need techniques from veri?ed computation in their applications. Topics of the seminar therefore included: – The ongoing revision of the IEEE 754/854 standard for ?oating-point ari- metic – Feasible ways to implement multiple precision (multiword) arithmetic and to compute the actual precision at run-time according to the needs of input data – The achievement of a similar behavior of ?xed-point, ?oating-point and - terval arithmetic across language compliant implementations – The design of robust and e?cient numerical programsportable from diverse computers to those that adhere to the IEEE standard – The development and propagation of validated special-purpose software in di?erent application areas – Error analysis in several contexts – Certi?cation of numerical programs, veri?cation and validation assessment Computer arithmetic plays an important role at the hardware and software level, when microprocessors, embedded systems, or grids are designed. The re- ability of numerical softwarestrongly depends on the compliance with the cor- sponding ?oating-point norms. Standard CISC processors follow the 1985 IEEE norm 754, which is currently under revision, but the new highly performing CELL processor is not fully IEEE compliant.
Download or read book Numerical Methods for Partial Differential Equations written by Sandip Mazumder and published by Academic Press. This book was released on 2015-12-01 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. - Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry - Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes - Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives
Download or read book Numerical Continuation Methods written by Eugene L. Allgower and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.
Download or read book Numerical Methods of Statistics written by John F. Monahan and published by Cambridge University Press. This book was released on 2011-04-18 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains how computer software is designed to perform the tasks required for sophisticated statistical analysis. For statisticians, it examines the nitty-gritty computational problems behind statistical methods. For mathematicians and computer scientists, it looks at the application of mathematical tools to statistical problems. The first half of the book offers a basic background in numerical analysis that emphasizes issues important to statisticians. The next several chapters cover a broad array of statistical tools, such as maximum likelihood and nonlinear regression. The author also treats the application of numerical tools; numerical integration and random number generation are explained in a unified manner reflecting complementary views of Monte Carlo methods. Each chapter contains exercises that range from simple questions to research problems. Most of the examples are accompanied by demonstration and source code available from the author's website. New in this second edition are demonstrations coded in R, as well as new sections on linear programming and the Nelder–Mead search algorithm.
Download or read book Matrix Numerical and Optimization Methods in Science and Engineering written by Kevin W. Cassel and published by Cambridge University Press. This book was released on 2021-03-04 with total page 728 pages. Available in PDF, EPUB and Kindle. Book excerpt: Address vector and matrix methods necessary in numerical methods and optimization of linear systems in engineering with this unified text. Treats the mathematical models that describe and predict the evolution of our processes and systems, and the numerical methods required to obtain approximate solutions. Explores the dynamical systems theory used to describe and characterize system behaviour, alongside the techniques used to optimize their performance. Integrates and unifies matrix and eigenfunction methods with their applications in numerical and optimization methods. Consolidating, generalizing, and unifying these topics into a single coherent subject, this practical resource is suitable for advanced undergraduate students and graduate students in engineering, physical sciences, and applied mathematics.
Download or read book Numerical Methods in Scientific Computing written by Germund Dahlquist and published by SIAM. This book was released on 2008-01-01 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new book from the authors of the classic book Numerical methods addresses the increasingly important role of numerical methods in science and engineering. More cohesive and comprehensive than any other modern textbook in the field, it combines traditional and well-developed topics with other material that is rarely found in numerical analysis texts, such as interval arithmetic, elementary functions, operator series, convergence acceleration, and continued fractions. Although this volume is self-contained, more comprehensive treatments of matrix computations will be given in a forthcoming volume. A supplementary Website contains three appendices: an introduction to matrix computations; a description of Mulprec, a MATLAB multiple precision package; and a guide to literature, algorithms, and software in numerical analysis. Review questions, problems, and computer exercises are also included. For use in an introductory graduate course in numerical analysis and for researchers who use numerical methods in science and engineering.
Download or read book Verification and Validation in Computational Science and Engineering written by Patrick J. Roache and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Tsunami Science Four Years After the 2004 Indian Ocean Tsunami written by Phil R. Cummins and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: The tragedy of the 2004 Indian Ocean tsunami has led to a rapid expansion in science directed at understanding tsunami and mitigating their hazard. A remarkable cross-section of this research was presented in the session: Tsunami Generation and Hazard, at the International Union of Geodesy and Geophysics XXIV General Assembly in Perugia, held in July of 2007. Over one hundred presentations were made at this session, spanning topics ranging from paleotsunami research, to nonlinear shallow-water theory, to tsunami hazard and risk assessment. A selection of this work, along with other contributions from leading tsunami scientists, is published in detail in the 28 papers of this special issue of Pure and Applied Geophysics: Tsunami Science Four Years After the Indian Ocean Tsunami. Part I of this issue includes 14 papers covering the state-of-the-art in tsunami modelling and hazard assessment. Another 14 papers are published in Part II focusing on observations and data analysis.
Download or read book Computer Simulation Validation written by Claus Beisbart and published by Springer. This book was released on 2019-04-09 with total page 1056 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique volume introduces and discusses the methods of validating computer simulations in scientific research. The core concepts, strategies, and techniques of validation are explained by an international team of pre-eminent authorities, drawing on expertise from various fields ranging from engineering and the physical sciences to the social sciences and history. The work also offers new and original philosophical perspectives on the validation of simulations. Topics and features: introduces the fundamental concepts and principles related to the validation of computer simulations, and examines philosophical frameworks for thinking about validation; provides an overview of the various strategies and techniques available for validating simulations, as well as the preparatory steps that have to be taken prior to validation; describes commonly used reference points and mathematical frameworks applicable to simulation validation; reviews the legal prescriptions, and the administrative and procedural activities related to simulation validation; presents examples of best practice that demonstrate how methods of validation are applied in various disciplines and with different types of simulation models; covers important practical challenges faced by simulation scientists when applying validation methods and techniques; offers a selection of general philosophical reflections that explore the significance of validation from a broader perspective. This truly interdisciplinary handbook will appeal to a broad audience, from professional scientists spanning all natural and social sciences, to young scholars new to research with computer simulations. Philosophers of science, and methodologists seeking to increase their understanding of simulation validation, will also find much to benefit from in the text.
Download or read book Computational Methods in Transport Verification and Validation written by Frank Graziani and published by Springer Science & Business Media. This book was released on 2008-08-09 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this book deals with a cross cutting issue affecting all transport disciplines, whether it be photon, neutron, charged particle or neutrino transport. That is, verification and validation. In this book, we learn what the astrophysicist, atmospheric scientist, mathematician or nuclear engineer do to assess the accuracy of their code. What convergence studies, what error analysis, what problems do each field use to ascertain the accuracy of their transport simulations.