EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Contemporary Multivariate Analysis and Design of Experiments

Download or read book Contemporary Multivariate Analysis and Design of Experiments written by Kaitai Fang and published by World Scientific. This book was released on 2005 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: Index. Subject index -- Author index

Book Partially Linear Models

    Book Details:
  • Author : Wolfgang Härdle
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642577008
  • Pages : 210 pages

Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.

Book Gaussian Process Regression Analysis for Functional Data

Download or read book Gaussian Process Regression Analysis for Functional Data written by Jian Qing Shi and published by CRC Press. This book was released on 2011-07-01 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Coveri

Book The Australian Temperament Project

Download or read book The Australian Temperament Project written by Suzanne Vassallo and published by . This book was released on 2013 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report highlights some of the key learnings about human development from the Australian Temperament Project (ATP) - a groundbreaking longitudinal study that, to date, has followed a large group of Victorians from their birth to age 30 years. ATP is a joint project between the Australian Institute of Family Studies, the Royal Children's Hospital, the University of Melbourne and Deakin University and is one of only a few in the world with information on three generations of study members - the young people, their parents, and now the young people's own children.

Book Multivariate Statistical Modelling Based on Generalized Linear Models

Download or read book Multivariate Statistical Modelling Based on Generalized Linear Models written by Ludwig Fahrmeir and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concerned with the use of generalised linear models for univariate and multivariate regression analysis, this is a detailed introductory survey of the subject, based on the analysis of real data drawn from a variety of subjects such as the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account.

Book Design of Observational Studies

Download or read book Design of Observational Studies written by Paul R. Rosenbaum and published by Springer Science & Business Media. This book was released on 2009-10-22 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: An observational study is an empiric investigation of effects caused by treatments when randomized experimentation is unethical or infeasible. Observational studies are common in most fields that study the effects of treatments on people, including medicine, economics, epidemiology, education, psychology, political science and sociology. The quality and strength of evidence provided by an observational study is determined largely by its design. Design of Observational Studies is both an introduction to statistical inference in observational studies and a detailed discussion of the principles that guide the design of observational studies. Design of Observational Studies is divided into four parts. Chapters 2, 3, and 5 of Part I cover concisely, in about one hundred pages, many of the ideas discussed in Rosenbaum’s Observational Studies (also published by Springer) but in a less technical fashion. Part II discusses the practical aspects of using propensity scores and other tools to create a matched comparison that balances many covariates. Part II includes a chapter on matching in R. In Part III, the concept of design sensitivity is used to appraise the relative ability of competing designs to distinguish treatment effects from biases due to unmeasured covariates. Part IV discusses planning the analysis of an observational study, with particular reference to Sir Ronald Fisher’s striking advice for observational studies, "make your theories elaborate." The second edition of his book, Observational Studies, was published by Springer in 2002.

Book Developing a Protocol for Observational Comparative Effectiveness Research  A User s Guide

Download or read book Developing a Protocol for Observational Comparative Effectiveness Research A User s Guide written by Agency for Health Care Research and Quality (U.S.) and published by Government Printing Office. This book was released on 2013-02-21 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This User’s Guide is a resource for investigators and stakeholders who develop and review observational comparative effectiveness research protocols. It explains how to (1) identify key considerations and best practices for research design; (2) build a protocol based on these standards and best practices; and (3) judge the adequacy and completeness of a protocol. Eleven chapters cover all aspects of research design, including: developing study objectives, defining and refining study questions, addressing the heterogeneity of treatment effect, characterizing exposure, selecting a comparator, defining and measuring outcomes, and identifying optimal data sources. Checklists of guidance and key considerations for protocols are provided at the end of each chapter. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews. More more information, please consult the Agency website: www.effectivehealthcare.ahrq.gov)

Book Handbook of Graphs and Networks

Download or read book Handbook of Graphs and Networks written by Stefan Bornholdt and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex interacting networks are observed in systems from such diverse areas as physics, biology, economics, ecology, and computer science. For example, economic or social interactions often organize themselves in complex network structures. Similar phenomena are observed in traffic flow and in communication networks as the internet. In current problems of the Biosciences, prominent examples are protein networks in the living cell, as well as molecular networks in the genome. On larger scales one finds networks of cells as in neural networks, up to the scale of organisms in ecological food webs. This book defines the field of complex interacting networks in its infancy and presents the dynamics of networks and their structure as a key concept across disciplines. The contributions present common underlying principles of network dynamics and their theoretical description and are of interest to specialists as well as to the non-specialized reader looking for an introduction to this new exciting field. Theoretical concepts include modeling networks as dynamical systems with numerical methods and new graph theoretical methods, but also focus on networks that change their topology as in morphogenesis and self-organization. The authors offer concepts to model network structures and dynamics, focussing on approaches applicable across disciplines.

Book Unified Methods for Censored Longitudinal Data and Causality

Download or read book Unified Methods for Censored Longitudinal Data and Causality written by Mark J. van der Laan and published by Springer Science & Business Media. This book was released on 2012-11-12 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fundamental statistical framework for the analysis of complex longitudinal data is provided in this book. It provides the first comprehensive description of optimal estimation techniques based on time-dependent data structures. The techniques go beyond standard statistical approaches and can be used to teach masters and Ph.D. students. The text is ideally suitable for researchers in statistics with a strong interest in the analysis of complex longitudinal data.

Book Applied Survival Analysis

Download or read book Applied Survival Analysis written by David W. Hosmer, Jr. and published by John Wiley & Sons. This book was released on 2011-09-23 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: THE MOST PRACTICAL, UP-TO-DATE GUIDE TO MODELLING AND ANALYZING TIME-TO-EVENT DATA—NOW IN A VALUABLE NEW EDITION Since publication of the first edition nearly a decade ago, analyses using time-to-event methods have increase considerably in all areas of scientific inquiry mainly as a result of model-building methods available in modern statistical software packages. However, there has been minimal coverage in the available literature to9 guide researchers, practitioners, and students who wish to apply these methods to health-related areas of study. Applied Survival Analysis, Second Edition provides a comprehensive and up-to-date introduction to regression modeling for time-to-event data in medical, epidemiological, biostatistical, and other health-related research. This book places a unique emphasis on the practical and contemporary applications of regression modeling rather than the mathematical theory. It offers a clear and accessible presentation of modern modeling techniques supplemented with real-world examples and case studies. Key topics covered include: variable selection, identification of the scale of continuous covariates, the role of interactions in the model, assessment of fit and model assumptions, regression diagnostics, recurrent event models, frailty models, additive models, competing risk models, and missing data. Features of the Second Edition include: Expanded coverage of interactions and the covariate-adjusted survival functions The use of the Worchester Heart Attack Study as the main modeling data set for illustrating discussed concepts and techniques New discussion of variable selection with multivariable fractional polynomials Further exploration of time-varying covariates, complex with examples Additional treatment of the exponential, Weibull, and log-logistic parametric regression models Increased emphasis on interpreting and using results as well as utilizing multiple imputation methods to analyze data with missing values New examples and exercises at the end of each chapter Analyses throughout the text are performed using Stata® Version 9, and an accompanying FTP site contains the data sets used in the book. Applied Survival Analysis, Second Edition is an ideal book for graduate-level courses in biostatistics, statistics, and epidemiologic methods. It also serves as a valuable reference for practitioners and researchers in any health-related field or for professionals in insurance and government.

Book Regression with Linear Predictors

Download or read book Regression with Linear Predictors written by Per Kragh Andersen and published by Springer. This book was released on 2010-07-15 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book about regression analysis, that is, the situation in statistics where the distribution of a response (or outcome) variable is related to - planatory variables (or covariates). This is an extremely common situation in the application of statistical methods in many ?elds, andlinear regression,- gistic regression, and Cox proportional hazards regression are frequently used for quantitative, binary, and survival time outcome variables, respectively. Several books on these topics have appeared and for that reason one may well ask why we embark on writing still another book on regression. We have two main reasons for doing this: 1. First, we want to highlightsimilaritiesamonglinear,logistic,proportional hazards,andotherregressionmodelsthatincludealinearpredictor. These modelsareoftentreatedentirelyseparatelyintextsinspiteofthefactthat alloperationsonthemodelsdealingwiththelinearpredictorareprecisely the same, including handling of categorical and quantitative covariates, testing for linearity and studying interactions. 2. Second, we want to emphasize that, for any type of outcome variable, multiple regression models are composed of simple building blocks that areaddedtogetherinthelinearpredictor:thatis,t-tests,one-wayanalyses of variance and simple linear regressions for quantitative outcomes, 2×2, 2×(k+1) tables and simple logistic regressions for binary outcomes, and 2-and (k+1)-sample logrank testsand simple Cox regressionsfor survival data. Thishastwoconsequences. Allthesesimpleandwellknownmethods can be considered as special cases of the regression models. On the other hand, the e?ect of a single explanatory variable in a multiple regression model can be interpreted in a way similar to that obtained in the simple analysis, however, now valid only for the other explanatory variables in the model “held ?xed”.

Book Statistical Learning with Sparsity

Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Book Model Selection and Multimodel Inference

Download or read book Model Selection and Multimodel Inference written by Kenneth P. Burnham and published by Springer Science & Business Media. This book was released on 2007-05-28 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique and comprehensive text on the philosophy of model-based data analysis and strategy for the analysis of empirical data. The book introduces information theoretic approaches and focuses critical attention on a priori modeling and the selection of a good approximating model that best represents the inference supported by the data. It contains several new approaches to estimating model selection uncertainty and incorporating selection uncertainty into estimates of precision. An array of examples is given to illustrate various technical issues. The text has been written for biologists and statisticians using models for making inferences from empirical data.

Book Multivariate Statistical Machine Learning Methods for Genomic Prediction

Download or read book Multivariate Statistical Machine Learning Methods for Genomic Prediction written by Osval Antonio Montesinos López and published by Springer Nature. This book was released on 2022-02-14 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Book Kernel Methods in Computational Biology

Download or read book Kernel Methods in Computational Biology written by Bernhard Schölkopf and published by MIT Press. This book was released on 2004 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed overview of current research in kernel methods and their application to computational biology.

Book Handbook of Survival Analysis

Download or read book Handbook of Survival Analysis written by John P. Klein and published by CRC Press. This book was released on 2016-04-19 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Survival Analysis presents modern techniques and research problems in lifetime data analysis. This area of statistics deals with time-to-event data that is complicated by censoring and the dynamic nature of events occurring in time. With chapters written by leading researchers in the field, the handbook focuses on advances in survival analysis techniques, covering classical and Bayesian approaches. It gives a complete overview of the current status of survival analysis and should inspire further research in the field. Accessible to a wide range of readers, the book provides: An introduction to various areas in survival analysis for graduate students and novices A reference to modern investigations into survival analysis for more established researchers A text or supplement for a second or advanced course in survival analysis A useful guide to statistical methods for analyzing survival data experiments for practicing statisticians

Book The Solution Path of the Generalized Lasso

Download or read book The Solution Path of the Generalized Lasso written by Ryan Joseph Tibshirani and published by Stanford University. This book was released on 2011 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: We present a path algorithm for the generalized lasso problem. This problem penalizes the l1 norm of a matrix D times the coefficient vector, and has a wide range of applications, dictated by the choice of D. Our algorithm is based on solving the dual of the generalized lasso, which facilitates computation and conceptual understanding of the path. For D=I (the usual lasso), we draw a connection between our approach and the well-known LARS algorithm. For an arbitrary D, we derive an unbiased estimate of the degrees of freedom of the generalized lasso fit. This estimate turns out to be quite intuitive in many applications.