EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Modern Statistics with R

Download or read book Modern Statistics with R written by Måns Thulin and published by CRC Press. This book was released on 2024-08-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Book Robust Multivariate Analysis

Download or read book Robust Multivariate Analysis written by David J. Olive and published by Springer. This book was released on 2017-11-28 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents methods that are robust to the assumption of a multivariate normal distribution or methods that are robust to certain types of outliers. Instead of using exact theory based on the multivariate normal distribution, the simpler and more applicable large sample theory is given. The text develops among the first practical robust regression and robust multivariate location and dispersion estimators backed by theory. The robust techniques are illustrated for methods such as principal component analysis, canonical correlation analysis, and factor analysis. A simple way to bootstrap confidence regions is also provided. Much of the research on robust multivariate analysis in this book is being published for the first time. The text is suitable for a first course in Multivariate Statistical Analysis or a first course in Robust Statistics. This graduate text is also useful for people who are familiar with the traditional multivariate topics, but want to know more about handling data sets with outliers. Many R programs and R data sets are available on the author’s website.

Book Beyond Multiple Linear Regression

Download or read book Beyond Multiple Linear Regression written by Paul Roback and published by CRC Press. This book was released on 2021-01-14 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)

Book Randomization  Bootstrap and Monte Carlo Methods in Biology  Second Edition

Download or read book Randomization Bootstrap and Monte Carlo Methods in Biology Second Edition written by Bryan F.J. Manly and published by CRC Press. This book was released on 1997-03-01 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomization, Bootstrap and Monte Carlo Methods in Biology, Second Edition features new material on on bootstrap confidence intervals and significance testing, and incorporates new developments on the treatments of randomization methods for regression and analysis variation, including descriptions of applications of these methods in spreadsheet programs such as Lotus and other commercial packages. This second edition illustrates the value of modern computer intensive methods in the solution of a wide range of problems, with particular emphasis on biological applications. Examples given in the text include the controversial topic of whether there is periodicity between co-occurrences of species on islands.

Book Randomization  Bootstrap and Monte Carlo Methods in Biology

Download or read book Randomization Bootstrap and Monte Carlo Methods in Biology written by Bryan F.J. Manly and published by CRC Press. This book was released on 2020-07-20 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. Like its bestselling predecessors, the fourth edition of Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates a large number of statistical methods with an emphasis on biological applications. The focus is now on the use of randomization, bootstrapping, and Monte Carlo methods in constructing confidence intervals and doing tests of significance. The text provides comprehensive coverage of computer-intensive applications, with data sets available online. Features Presents an overview of computer-intensive statistical methods and applications in biology Covers a wide range of methods including bootstrap, Monte Carlo, ANOVA, regression, and Bayesian methods Makes it easy for biologists, researchers, and students to understand the methods used Provides information about computer programs and packages to implement calculations, particularly using R code Includes a large number of real examples from a range of biological disciplines Written in an accessible style, with minimal coverage of theoretical details, this book provides an excellent introduction to computer-intensive statistical methods for biological researchers. It can be used as a course text for graduate students, as well as a reference for researchers from a range of disciplines. The detailed, worked examples of real applications will enable practitioners to apply the methods to their own biological data.

Book Randomization  Bootstrap and Monte Carlo Methods in Biology  Third Edition

Download or read book Randomization Bootstrap and Monte Carlo Methods in Biology Third Edition written by Bryan F.J. Manly and published by CRC Press. This book was released on 2006-08-15 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern computer-intensive statistical methods play a key role in solving many problems across a wide range of scientific disciplines. This new edition of the bestselling Randomization, Bootstrap and Monte Carlo Methods in Biology illustrates the value of a number of these methods with an emphasis on biological applications. This textbook focuses on three related areas in computational statistics: randomization, bootstrapping, and Monte Carlo methods of inference. The author emphasizes the sampling approach within randomization testing and confidence intervals. Similar to randomization, the book shows how bootstrapping, or resampling, can be used for confidence intervals and tests of significance. It also explores how to use Monte Carlo methods to test hypotheses and construct confidence intervals. New to the Third Edition Updated information on regression and time series analysis, multivariate methods, survival and growth data as well as software for computational statistics References that reflect recent developments in methodology and computing techniques Additional references on new applications of computer-intensive methods in biology Providing comprehensive coverage of computer-intensive applications while also offering data sets online, Randomization, Bootstrap and Monte Carlo Methods in Biology, Third Edition supplies a solid foundation for the ever-expanding field of statistics and quantitative analysis in biology.

Book Practical Statistics for Data Scientists

Download or read book Practical Statistics for Data Scientists written by Peter Bruce and published by "O'Reilly Media, Inc.". This book was released on 2017-05-10 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Book Applied Linear Regression

Download or read book Applied Linear Regression written by Sanford Weisberg and published by John Wiley & Sons. This book was released on 2013-06-07 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master linear regression techniques with a new edition of a classic text Reviews of the Second Edition: "I found it enjoyable reading and so full of interesting material that even the well-informed reader will probably find something new . . . a necessity for all of those who do linear regression." —Technometrics, February 1987 "Overall, I feel that the book is a valuable addition to the now considerable list of texts on applied linear regression. It should be a strong contender as the leading text for a first serious course in regression analysis." —American Scientist, May–June 1987 Applied Linear Regression, Third Edition has been thoroughly updated to help students master the theory and applications of linear regression modeling. Focusing on model building, assessing fit and reliability, and drawing conclusions, the text demonstrates how to develop estimation, confidence, and testing procedures primarily through the use of least squares regression. To facilitate quick learning, the Third Edition stresses the use of graphical methods in an effort to find appropriate models and to better understand them. In that spirit, most analyses and homework problems use graphs for the discovery of structure as well as for the summarization of results. The Third Edition incorporates new material reflecting the latest advances, including: Use of smoothers to summarize a scatterplot Box-Cox and graphical methods for selecting transformations Use of the delta method for inference about complex combinations of parameters Computationally intensive methods and simulation, including the bootstrap method Expanded chapters on nonlinear and logistic regression Completely revised chapters on multiple regression, diagnostics, and generalizations of regression Readers will also find helpful pedagogical tools and learning aids, including: More than 100 exercises, most based on interesting real-world data Web primers demonstrating how to use standard statistical packages, including R, S-Plus®, SPSS®, SAS®, and JMP®, to work all the examples and exercises in the text A free online library for R and S-Plus that makes the methods discussed in the book easy to use With its focus on graphical methods and analysis, coupled with many practical examples and exercises, this is an excellent textbook for upper-level undergraduates and graduate students, who will quickly learn how to use linear regression analysis techniques to solve and gain insight into real-life problems.

Book Regression Diagnostics

Download or read book Regression Diagnostics written by John Fox and published by SAGE Publications. This book was released on 2019-12-09 with total page 169 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression diagnostics are methods for determining whether a regression model that has been fit to data adequately represents the structure of the data. For example, if the model assumes a linear (straight-line) relationship between the response and an explanatory variable, is the assumption of linearity warranted? Regression diagnostics not only reveal deficiencies in a regression model that has been fit to data but in many instances may suggest how the model can be improved. The Second Edition of this bestselling volume by John Fox considers two important classes of regression models: the normal linear regression model (LM), in which the response variable is quantitative and assumed to have a normal distribution conditional on the values of the explanatory variables; and generalized linear models (GLMs) in which the conditional distribution of the response variable is a member of an exponential family. R code and data sets for examples within the text can be found on an accompanying website.

Book Linear Regression Analysis

Download or read book Linear Regression Analysis written by Xin Yan and published by World Scientific. This book was released on 2009 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume presents in detail the fundamental theories of linear regression analysis and diagnosis, as well as the relevant statistical computing techniques so that readers are able to actually model the data using the techniques described in the book. This book is suitable for graduate students who are either majoring in statistics/biostatistics or using linear regression analysis substantially in their subject area." --Book Jacket.

Book An R and S Plus Companion to Applied Regression

Download or read book An R and S Plus Companion to Applied Regression written by John Fox and published by SAGE. This book was released on 2002-06-05 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book fits right into a needed niche: rigorous enough to give full explanation of the power of the S language, yet accessible enough to assign to social science graduate students without fear of intimidation. It is a tremendous balance of applied statistical "firepower" and thoughtful explanation. It meets all of the important mechanical needs: each example is given in detail, code and data are freely available, and the nuances of models are given rather than just the bare essentials. It also meets some important theoretical needs: linear models, categorical data analysis, an introduction to applying GLMs, a discussion of model diagnostics, and useful instructions on writing customized functions. " —JEFF GILL, University of Florida, Gainesville

Book The Role of Teacher Interpersonal Variables in Students    Academic Engagement  Success  and Motivation

Download or read book The Role of Teacher Interpersonal Variables in Students Academic Engagement Success and Motivation written by Ali Derakhshan and published by Frontiers Media SA. This book was released on 2022-07-05 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Nitrogen Cycle at Regional to Global Scales

Download or read book The Nitrogen Cycle at Regional to Global Scales written by Elizabeth W. Boyer and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: This issue is the final report from the International SCOPE Project on Nitrogen Transport and Transformations: A Regional and Global Analysis. SCOPE (the Scientific Committee on Problems of the Environment, ICSU) authorized the Nitrogen Project as an 8-year effort between 1994 and 2002 because of the need to better understand how humans have altered nitrogen cyc1ing globally and at the scale of large regions. Human activity has more than doubled the rate of formation of reactive nitrogen on the land surface of the earth, and the nitrogen cyc1e continues to accelerate. The distribution of this reactive nitrogen is not uniform, though, and some regions such as Europe and Asia have seen massive increases in reactive nitrogen, while other regions have seen little change. The SCOPE Nitrogen Project has synthesized detailed information on the nature of the human alteration of the nitrogen cyc1e through aseries of workshops over the past 8 years. These cumulatively have involved over 250 of previous workshops scientists from over 20 different nations. The results have been published in aseries of special journal issues and reports that synthesize information on nitrogen in the North Atlantic Ocean and its water sheds (Howarth 1996), nitrogen cycling in Asia (Hong-Chi Lin et al. 1996; Mosier et al.

Book Applied Regression Including Computing and Graphics

Download or read book Applied Regression Including Computing and Graphics written by R. Dennis Cook and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide to computing and graphics in regression analysis In this unique book, leading statisticians Dennis Cook and Sanford Weisberg expertly blend regression fundamentals and cutting-edge graphical techniques. They combine and up- date most of the material from their widely used earlier work, An Introduction to Regression Graphics, and Weisberg's Applied Linear Regression; incorporate the latest in statistical graphics, computing, and regression models; and wind up with a modern, fully integrated approach to one of the most important tools of data analysis. In 23 concise, easy-to-digest chapters, the authors present:? A wealth of simple 2D and 3D graphical techniques, helping visualize results through graphs * An improved version of the user-friendly Arc software, which lets readers promptly implement new ideas * Complete coverage of regression models, including logistic regression and generalized linear models * More than 300 figures, easily reproducible on the computer * Numerous examples and problems based on real data * A companion Web site featuring free software and advice, available at www.wiley.com/mathem atics Accessible, self-contained, and fully referenced, Applied Regression Including Computing and Graphics assumes only a first course in basic statistical methods and provides a bona fide user manual for the Arc software. It is an invaluable resource for anyone interested in learning how to analyze regression problems with confidence and depth.

Book Applied Linear Statistical Models

Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.

Book Fitting Models to Biological Data Using Linear and Nonlinear Regression

Download or read book Fitting Models to Biological Data Using Linear and Nonlinear Regression written by Harvey Motulsky and published by Oxford University Press. This book was released on 2004-05-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most biologists use nonlinear regression more than any other statistical technique, but there are very few places to learn about curve-fitting. This book, by the author of the very successful Intuitive Biostatistics, addresses this relatively focused need of an extraordinarily broad range of scientists.

Book Information Processing in Medical Imaging

Download or read book Information Processing in Medical Imaging written by Jerry L. Prince and published by Springer. This book was released on 2009-07-30 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refeered proceedings of the 21st International Conference on Information Processing in Medical Imaging, IPMI 2009, held in Williamsburg, VA, USA, in July 2009 The 26 revised full papers and 33 revised poster papers presented were carefully reviewed and selected from 150 submissions. The papers are organized in topical sections on diffusion imaging, PET imaging, image registration, functional networks, space curves, tractography, microscopy, exploratory analyses, features and detection, image guided surgery, shape analysis, motion, and segmentation and validation.