EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Vapor Bubble Dynamics in Microgravity

Download or read book Vapor Bubble Dynamics in Microgravity written by HoSung Lee and published by . This book was released on 1993 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bubble Dynamics  Two Phase Flow  and Boiling Heat Transfer in Microgravity

Download or read book Bubble Dynamics Two Phase Flow and Boiling Heat Transfer in Microgravity written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-07-23 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report contains two independent sections. Part one is titled Terrestrial and Microgravity Pool Boiling Heat Transfer and Critical heat flux phenomenon in an acoustic standing wave. Terrestrial and microgravity pool boiling heat transfer experiments were performed in the presence of a standing acoustic wave from a platinum wire resistance heater using degassed FC-72 Fluorinert liquid. The sound wave was created by driving a half wavelength resonator at a frequency of 10.15 kHz. Microgravity conditions were created using the 2.1 second drop tower on the campus of Washington State University. Burnout of the heater wire, often encountered with heat flux controlled systems, was avoided by using a constant temperature controller to regulate the heater wire temperature. The amplitude of the acoustic standing wave was increased from 28 kPa to over 70 kPa and these pressure measurements were made using a hydrophone fabricated with a small piezoelectric ceramic. Cavitation incurred during experiments at higher acoustic amplitudes contributed to the vapor bubble dynamics and heat transfer. The heater wire was positioned at three different locations within the acoustic field: the acoustic node, antinode, and halfway between these locations. Complete boiling curves are presented to show how the applied acoustic field enhanced boiling heat transfer and increased critical heat flux in microgravity and terrestrial environments. Video images provide information on the interaction between the vapor bubbles and the acoustic field. Part two is titled, Design and qualification of a microscale heater array for use in boiling heat transfer. This part is summarized herein. Boiling heat transfer is an efficient means of heat transfer because a large amount of heat can be removed from a surface using a relatively small temperature difference between the surface and the bulk liquid. However, the mechanisms that govern boiling heat transfer are not well understood. Measurements of wall te...

Book R and D Work on the Constrained Vapor Bubble System for a Microgravity Experiment

Download or read book R and D Work on the Constrained Vapor Bubble System for a Microgravity Experiment written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-24 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are working with Project Scientists R. Balasubramanian and Sang Young Son, and a NASA Projects Team headed by Sue Motil at the Glenn Research Center on the design and development of an experimental system for use on the International Space Station during the year 2006. John Eustace is the coordinator for the flight experiment at Zin-Tech (previously Northrop-Grumman) for the design and development of the Constrained Vapor Bubble Heat Exchanger, CVBHX, cell which will fit into the Light Microscope Module, LMM. Good progress is being made. The CDR for the LMM being developed was held on December 10-1 1,2003. Experimental results obtained under microgravity conditions will be compared with those obtained at Rensselaer. Basic and applied research at Rensselaer continues on the experimental and theoretical details associated with passive phase change heat transfer processes controlled by interfacial forces in the CVBHX. The extensive results of our current research are presented in the 23 external publications listed below. Twenty-two external presentations have been given. Briefly, evaporation/condensation data from both vertical and horizontal CVBHX systems were obtained and analyzed for both polar (wetting) and apolar (partially wetting) fluids. The vertical system is axi-symmetric, but strongly effected by gravity. Whereas, the horizontal system is asymmetric, but weakly effected by gravity. Therefore, there will be significant differences in the operation of the cell in the earth s environment versus the operation under microgravity conditions. Due to its relative large size, the system s performance should be optimum under micro-gravity conditions, where the CVBHX should be a very effective passive heat exchanger. The CVBHX was found to be an ideal experimental setup in which to study the effects of interfacial phenomena on both the evaporation and drop-wise condensation processes. The optical technique (Image Analyzing Interferometry, IAI), which is based on th

Book Physics of Fluids in Microgravity

Download or read book Physics of Fluids in Microgravity written by Rodolfo Monti and published by CRC Press. This book was released on 2002-01-10 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a microgravity experiment, the conditions prevalent in fluid phases can be substantially different from those on the ground and can be exploited to improve different processes. Fluid physics research in microgravity is important for the advancement of all microgravity scients: life, material, and engineering. Space flight provides a unique laboratory that allows scientists to improve their understanding of the behaviour of fluids in low gravity, allowing the investigation of phenomena and processes normally masked by the effects of gravity and thus difficult to study on Earth. Physics of Fluids in Microgravity provides a clear view of recent research and progress in the different fields of fluid research in space. The topics presented include bubles and drops dynamics, Maragoni flows, diffustion and thermodiffusion, solidfication,a nd crystal growth. The results obtained so far are, in some cases, to be confirmed by extensive research activities on the International Space station, where basic and applied microgravity experimentation will take place in the years to come.

Book Microgravity Science   Applications

Download or read book Microgravity Science Applications written by and published by . This book was released on 1993 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies

Download or read book Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies written by National Research Council and published by National Academies Press. This book was released on 2000-07-03 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The frontier represented by the near solar system confronts humanity with intriguing challenges and opportunities. With the inception of the Human Exploration and Development of Space (HEDS) enterprise in 1995, NASA has acknowledged the opportunities and has accepted the very significant challenges. Microgravity Research in Support of Technologies for the Human Exploration and Development of Space and Planetary Bodies was commissioned by NASA to assist it in coordinating the scientific information relevant to anticipating, identifying, and solving the technical problems that must be addressed throughout the HEDS program over the coming decades. This report assesses scientific and related technological issues facing NASA's Human Exploration and Development of Space endeavor, looking specifically at mission enabling and enhancing technologies which, for development, require an improved understanding of fluid and material behavior in a reduced gravity environment.

Book Interacting Effects of Inertia and Gravity on Bubble Dynamics

Download or read book Interacting Effects of Inertia and Gravity on Bubble Dynamics written by Yohann Lilian Rousselet and published by . This book was released on 2014 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge of the physical mechanisms governing bubble dynamics and two-phase heat transfer is critical in order to accurately predict and scale the performance of two-phase systems, most importantly in low-g environments. To better understand flow boiling, especially under microgravity conditions, the dynamics of single and multiple bubbles under different levels of bulk liquid velocity, surface orientation, contact angle, and substrate materials are studied in this work. Microfabricated cavities at the center of a flat heating surface are used to generate bubbles. Silicon and aluminum are used as substrate materials, with contact angles of 56° and 19°, respectively, with water as test liquid. The investigated bulk liquid velocities ranged from 0 m/s to 0.25 m/s, while surface orientation varies from horizontal to vertical, through 30°, 45° and 60°, and cavity spacing from 0.4 mm to 1.2 mm, in upflow conditions. Bulk liquid temperature was set close to saturation temperature, with bulk liquid subcooling less than 1° C, and wall superheat was maintained between 5.0° C and 6.0 °C. Based on the experimental data, a simple force balance model was developed, and is used to develop a model to predict bubble lift off. These forces are the lift force (F_b), the buoyancy force (F_b), the surface tension force (F_s), the contact pressure force (F_cp), and the inertia of both the vapor and the liquid displaced by the growing bubble. It is showed that at the instant when bubble lift off is initiated, the sum of forces acting on the bubble is equal to zero (and then becomes positive in the direction normal to the heater). This force balance is used to develop an expression for bubble lift off diameter. It also is found that for single and merged bubbles, when lift off occurs, buoyancy and lift forces are the only forces acting on the bubble, regardless of orientation, contact angle and flow velocity, and that for all cases, the ratio (F_b + F1) / A1 is constant and equal to 2.25 N/m2, where A1 is the bubble surface area at lift off.

Book Microgravity Fluid Physics and Heat Transfer

Download or read book Microgravity Fluid Physics and Heat Transfer written by V. K. Dhir and published by Begell House Publishers. This book was released on 2000 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physical Science Under Microgravity  Experiments on Board the SJ 10 Recoverable Satellite

Download or read book Physical Science Under Microgravity Experiments on Board the SJ 10 Recoverable Satellite written by Wenrui Hu and published by Springer Nature. This book was released on 2019-10-16 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the physical science experiments in a space microgravity environment conducted on board the SJ-10 recoverable satellite, which was launched on April 6th, 2016 and recovered on April 18th, 2016. The experiments described were selected from ~100 proposals from various institutions in China and around the world, and have never previously been conducted in the respective fields. They involve fluid physics and materials science, and primarily investigate the kinetic properties of matter in a space microgravity environment. The book provides a comprehensive review of these experiments, as well as the mission’s execution, data collection, and scientific outcomes.

Book Advances in Heat Transfer

    Book Details:
  • Author : James P. Hartnett
  • Publisher : Academic Press
  • Release : 2001-04-24
  • ISBN : 0080524435
  • Pages : 335 pages

Download or read book Advances in Heat Transfer written by James P. Hartnett and published by Academic Press. This book was released on 2001-04-24 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat transfer is the exchange of heat energy between a system and its surrounding environment, which results from a temperature difference and takes place by means of a process of thermal conduction, mechanical convection, or electromagnetic radiation. Advances in Heat Transfer is designed to fill the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than is allowable in either journals or texts.

Book Handbook of Phase Change

Download or read book Handbook of Phase Change written by S.G. Kandlikar and published by Routledge. This book was released on 2019-01-22 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive coverage of the basic phenomena. It contains twenty-five chapters which cover different aspects of boiling and condensation. First the specific topic or phenomenon is described, followed by a brief survey of previous work, a phenomenological model based on current understanding, and finally a set of recommended design equa

Book Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Building

Download or read book Numerical Simulations of Bubble Dynamics and Heat Transfer in Pool Building written by Eduardo Aktinol and published by . This book was released on 2014 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the complex nature of the subprocesses involved in nucleate boiling, it has not been possible to develop comprehensive models or correlations despite decades of accumulated data and analysis. Complications such as the presence of dissolved gas in the liquid further confound attempts at modeling nucleate boiling. Moreover, existing empirical correlations may not be suitable for new applications, especially with regards to varying gravity level. More recently, numerical simulations of the boiling process have proven to be capable of reliably predicting bubble dynamics and associated heat transfer by showing excellent agreement with experimental data. However, most simulations decouple the solid substrate by assuming constant wall temperature. In the present study complete numerical simulations of the boiling process are performed--including conjugate transient conduction in the solid substrate and the effects of dissolved gas in the liquid at different levels of gravity. Finite difference schemes are used to discretize the governing equations in the liquid, vapor, and solid phases. The interface between liquid and vapor phases is tracked by a level set method. An iterative procedure is used at the interface between the solid and fluid phases. Near the three-phase contact line, temperatures in the solid are observed to fluctuate significantly over short periods. The results show good agreement with the data available in the literature. The results also show that waiting and growth periods can be related directly to wall superheat. The functional relationship between waiting period and wall superheat is found to agree well with empirical correlations reported in the literature. For the case of a single bubble in subcooled nucleate boiling, the presence of dissolved gas in the liquid is found to cause noncondensables to accumulate at the top of the bubble where most condensation occurs. This results in reduced local saturation temperature and condensation rates. The numerical predictions show reasonable agreement with the results from experiments performed at microgravity. For nucleate boiling at microgravity the simulations predict a drastic change in vapor removal pattern when compared to Earth normal gravity. The predictions match well with experimental results. However, simulated heat transfer rates were significantly under-predicted.

Book Transport Phenomena in Microgravity

Download or read book Transport Phenomena in Microgravity written by S. S. Sadhal and published by . This book was released on 2004 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: The plans for an international space station, long distance space travel (perhaps to Mars), and the potential for commercial production of ultra pure silicon or polymer crystals are what make these topics of current relevance. The program includes topics such as transport in biological systems (relevant to bone loss associated with long-duration space travel), acoustic levitation, electromagnetic phenomena, crystal growth, protein crystallization, and boiling.