EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Data Mining and Learning Analytics

Download or read book Data Mining and Learning Analytics written by Samira ElAtia and published by John Wiley & Sons. This book was released on 2016-09-20 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

Book Human Centered Computing

    Book Details:
  • Author : Danijela Milošević
  • Publisher : Springer Nature
  • Release : 2020-01-20
  • ISBN : 3030374297
  • Pages : 729 pages

Download or read book Human Centered Computing written by Danijela Milošević and published by Springer Nature. This book was released on 2020-01-20 with total page 729 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes thoroughly reviewed, revised and selected papers from the 5th International Conference on Human Centered Computing, HCC 2019, held in Čačak, Serbia, in August 2019. The 48 full and 23 short papers presented in this volume were carefully reviewed and selected from a total of 133 submissions. The papers focus on deep learning and its applications on a variety of real-life problems, ranging from image/video analysis, to human-computer interaction, and to logistics and supply chain management.

Book Educational Data Mining

Download or read book Educational Data Mining written by Alejandro Peña-Ayala and published by Springer. This book was released on 2013-11-08 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the Educational Data Mining arena. It highlights works that show relevant proposals, developments, and achievements that shape trends and inspire future research. After a rigorous revision process sixteen manuscripts were accepted and organized into four parts as follows: · Profile: The first part embraces three chapters oriented to: 1) describe the nature of educational data mining (EDM); 2) describe how to pre-process raw data to facilitate data mining (DM); 3) explain how EDM supports government policies to enhance education. · Student modeling: The second part contains five chapters concerned with: 4) explore the factors having an impact on the student's academic success; 5) detect student's personality and behaviors in an educational game; 6) predict students performance to adjust content and strategies; 7) identify students who will most benefit from tutor support; 8) hypothesize the student answer correctness based on eye metrics and mouse click. · Assessment: The third part has four chapters related to: 9) analyze the coherence of student research proposals; 10) automatically generate tests based on competences; 11) recognize students activities and visualize these activities for being presented to teachers; 12) find the most dependent test items in students response data. · Trends: The fourth part encompasses four chapters about how to: 13) mine text for assessing students productions and supporting teachers; 14) scan student comments by statistical and text mining techniques; 15) sketch a social network analysis (SNA) to discover student behavior profiles and depict models about their collaboration; 16) evaluate the structure of interactions between the students in social networks. This volume will be a source of interest to researchers, practitioners, professors, and postgraduate students aimed at updating their knowledge and find targets for future work in the field of educational data mining.

Book Data Mining

    Book Details:
  • Author : Derya Birant
  • Publisher : BoD – Books on Demand
  • Release : 2021-01-20
  • ISBN : 183968318X
  • Pages : 214 pages

Download or read book Data Mining written by Derya Birant and published by BoD – Books on Demand. This book was released on 2021-01-20 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data mining is a branch of computer science that is used to automatically extract meaningful, useful knowledge and previously unknown, hidden, interesting patterns from a large amount of data to support the decision-making process. This book presents recent theoretical and practical advances in the field of data mining. It discusses a number of data mining methods, including classification, clustering, and association rule mining. This book brings together many different successful data mining studies in various areas such as health, banking, education, software engineering, animal science, and the environment.

Book Big Data on Campus

    Book Details:
  • Author : Karen L. Webber
  • Publisher : Johns Hopkins University Press
  • Release : 2020-11-03
  • ISBN : 1421439034
  • Pages : 337 pages

Download or read book Big Data on Campus written by Karen L. Webber and published by Johns Hopkins University Press. This book was released on 2020-11-03 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Webber, Henry Y. Zheng, Ying Zhou

Book Information Technology and Systems

Download or read book Information Technology and Systems written by Álvaro Rocha and published by Springer. This book was released on 2019-01-28 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features a selection of articles from The 2019 International Conference on Information Technology & Systems (ICITS’19), held at the Universidad de Las Fuerzas Armadas, in Quito, Ecuador, on 6th to 8th February 2019. ICIST is a global forum for researchers and practitioners to present and discuss recent findings and innovations, current trends, professional experiences and challenges of modern information technology and systems research, together with their technological development and applications. The main topics covered are: information and knowledge management; organizational models and information systems; software and systems modeling; software systems, architectures, applications and tools; multimedia systems and applications; computer networks, mobility and pervasive systems; intelligent and decision support systems; big data analytics and applications; human–computer interaction; ethics, computers & security; health informatics; information technologies in education; cybersecurity and cyber-defense; electromagnetics, sensors and antennas for security.

Book 2021 Mohammad Ali Jinnah University International Conference on Computing  MAJICC

Download or read book 2021 Mohammad Ali Jinnah University International Conference on Computing MAJICC written by IEEE Staff and published by . This book was released on 2021-07-15 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: With the mission to provide the premier forum for the advancement, education, and adoption of the latest research trends and technology from all types of fields in computers and networks of computers in Pakistan and following the footsteps of many educational institutions around the world, MAJU is proud to announce the first ever IEEE Mohammad Ali Jinnah university International Conference on Computing, where renowned experts will share the stage provided by MAJU to illuminate the minds of up and coming cutting edge research and application of computer science, with their knowledge of the field, in an effort to jump start the software industry in Pakistan

Book Early Warning Systems and Targeted Interventions for Student Success in Online Courses

Download or read book Early Warning Systems and Targeted Interventions for Student Success in Online Courses written by Glick, Danny and published by IGI Global. This book was released on 2020-06-26 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Online learning has increasingly been viewed as a possible way to remove barriers associated with traditional face-to-face teaching, such as overcrowded classrooms and shortage of certified teachers. While online learning has been recognized as a possible approach to deliver more desirable learning outcomes, close to half of online students drop out as a result of student-related, course-related, and out-of-school-related factors (e.g., poor self-regulation; ineffective teacher-student, student-student, and platform-student interactions; low household income). Many educators have expressed concern over students who unexpectedly begin to struggle and appear to fall off track without apparent reason. A well-implemented early warning system, therefore, can help educators identify students at risk of dropping out and assign and monitor interventions to keep them on track for graduation. Despite the popularity of early warning systems, research on their design and implementation is sparse. Early Warning Systems and Targeted Interventions for Student Success in Online Courses is a cutting-edge research publication that examines current theoretical frameworks, research projects, and empirical studies related to the design, implementation, and evaluation of early warning systems and targeted interventions and discusses their implications for policy and practice. Moreover, this book will review common challenges of early warning systems and dashboard design and will explore design principles and data visualization tools to make data more understandable and, therefore, more actionable. Highlighting a range of topics such as curriculum design, game-based learning, and learning support, it is ideal for academicians, policymakers, administrators, researchers, education professionals, instructional designers, data analysts, and students.

Book Success in Higher Education

Download or read book Success in Higher Education written by Leigh N. Wood and published by Springer. This book was released on 2016-10-26 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores successful transition strategies to, within and from university for students from around the globe, with Macquarie University, a large Australian university, studied in depth. It addresses the meaning of success taking a variety of perspectives, including student, staff and employer views. The chapters present a series of initiatives that have proven to be successful in assisting students in developing their academic potential throughout university and beyond. The authors of the chapters use a variety of methodologies and approaches reflecting the diverse local contexts and requirements. These international perspectives demonstrate a triumph of practice that has led to the empowerment of individuals and groups. The approaches from twelve universities located in eight different countries stem directly from the coalface and provide many valuable lessons and tools that colleagues in the sector will be able to consider and adapt in their own contexts. Small interventions matter, from a mentor of a nervous student who goes on to achieve greatness, to the use of a curriculum design model that hooks a whole group of students into learning and achievement. This book covers both the small, individual victories and the larger scale strategies that support success. Contributions emanate from Australia, Bangladesh, India, China, New Zealand, United Kingdom, Canada, USA, Uruguay and South Africa.

Book Handbook of Statistical Analysis and Data Mining Applications

Download or read book Handbook of Statistical Analysis and Data Mining Applications written by Ken Yale and published by Elsevier. This book was released on 2017-11-09 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Statistical Analysis and Data Mining Applications, Second Edition, is a comprehensive professional reference book that guides business analysts, scientists, engineers and researchers, both academic and industrial, through all stages of data analysis, model building and implementation. The handbook helps users discern technical and business problems, understand the strengths and weaknesses of modern data mining algorithms and employ the right statistical methods for practical application. This book is an ideal reference for users who want to address massive and complex datasets with novel statistical approaches and be able to objectively evaluate analyses and solutions. It has clear, intuitive explanations of the principles and tools for solving problems using modern analytic techniques and discusses their application to real problems in ways accessible and beneficial to practitioners across several areas—from science and engineering, to medicine, academia and commerce. - Includes input by practitioners for practitioners - Includes tutorials in numerous fields of study that provide step-by-step instruction on how to use supplied tools to build models - Contains practical advice from successful real-world implementations - Brings together, in a single resource, all the information a beginner needs to understand the tools and issues in data mining to build successful data mining solutions - Features clear, intuitive explanations of novel analytical tools and techniques, and their practical applications

Book Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences

Download or read book Contemporary Issues in Exploratory Data Mining in the Behavioral Sciences written by John J. McArdle and published by Routledge. This book was released on 2013-08-15 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the latest techniques in exploratory data mining (EDM) for the analysis of data in the social and behavioral sciences to help researchers assess the predictive value of different combinations of variables in large data sets. Methodological findings and conceptual models that explain reliable EDM techniques for predicting and understanding various risk mechanisms are integrated throughout. Numerous examples illustrate the use of these techniques in practice. Contributors provide insight through hands-on experiences with their own use of EDM techniques in various settings. Readers are also introduced to the most popular EDM software programs. A related website at http://mephisto.unige.ch/pub/edm-book-supplement/offers color versions of the book’s figures, a supplemental paper to chapter 3, and R commands for some chapters. The results of EDM analyses can be perilous – they are often taken as predictions with little regard for cross-validating the results. This carelessness can be catastrophic in terms of money lost or patients misdiagnosed. This book addresses these concerns and advocates for the development of checks and balances for EDM analyses. Both the promises and the perils of EDM are addressed. Editors McArdle and Ritschard taught the "Exploratory Data Mining" Advanced Training Institute of the American Psychological Association (APA). All contributors are top researchers from the US and Europe. Organized into two parts--methodology and applications, the techniques covered include decision, regression, and SEM tree models, growth mixture modeling, and time based categorical sequential analysis. Some of the applications of EDM (and the corresponding data) explored include: selection to college based on risky prior academic profiles the decline of cognitive abilities in older persons global perceptions of stress in adulthood predicting mortality from demographics and cognitive abilities risk factors during pregnancy and the impact on neonatal development Intended as a reference for researchers, methodologists, and advanced students in the social and behavioral sciences including psychology, sociology, business, econometrics, and medicine, interested in learning to apply the latest exploratory data mining techniques. Prerequisites include a basic class in statistics.

Book Big Data and Learning Analytics in Higher Education

Download or read book Big Data and Learning Analytics in Higher Education written by Ben Kei Daniel and published by Springer. This book was released on 2016-08-27 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​This book focuses on the uses of big data in the context of higher education. The book describes a wide range of administrative and operational data gathering processes aimed at assessing institutional performance and progress in order to predict future performance, and identifies potential issues related to academic programming, research, teaching and learning​. Big data refers to data which is fundamentally too big and complex and moves too fast for the processing capacity of conventional database systems. The value of big data is the ability to identify useful data and turn it into useable information by identifying patterns and deviations from patterns​.

Book Emergence and Innovation in Digital Learning

Download or read book Emergence and Innovation in Digital Learning written by George Veletsianos and published by Athabasca University Press. This book was released on 2016-06-01 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Educational systems worldwide are facing an enormous shift as a result of sociocultural, political, economic, and technological changes. The technologies and practices that have developed over the last decade have been heralded as opportunities to transform both online and traditional education systems. While proponents of these new ideas often postulate that they have the potential to address the educational problems facing both students and institutions and that they could provide an opportunity to rethink the ways that education is organized and enacted, there is little evidence of emerging technologies and practices in use in online education. Because researchers and practitioners interested in these possibilities often reside in various disciplines and academic departments the sharing and dissemination of their work across often rigid boundaries is a formidable task. Contributors to Emergence and Innovation in Digital Learning include individuals who are shaping the future of online learning with their innovative applications and investigations on the impact of issues such as openness, analytics, MOOCs, and social media. Building on work first published in Emerging Technologies in Distance Education, the contributors to this collection harness the dispersed knowledge in online education to provide a one-stop locale for work on emergent approaches in the field. Their conclusions will influence the adoption and success of these approaches to education and will enable researchers and practitioners to conceptualize, critique, and enhance their understanding of the foundations and applications of new technologies.

Book Data Mining Methods and Models

Download or read book Data Mining Methods and Models written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2006-02-02 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides: * The latest techniques for uncovering hidden nuggets of information * The insight into how the data mining algorithms actually work * The hands-on experience of performing data mining on large data sets Data Mining Methods and Models: * Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing" * Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises * Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software * Includes a companion Web site, www.dataminingconsultant.com, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.

Book Data Science in Education Using R

Download or read book Data Science in Education Using R written by Ryan A. Estrellado and published by Routledge. This book was released on 2020-10-26 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.

Book The College Dropout Scandal

Download or read book The College Dropout Scandal written by David Kirp and published by Oxford University Press. This book was released on 2019-07-01 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher education today faces a host of challenges, from quality to cost. But too little attention gets paid to a startling fact: four out of ten students -- that's more than ten percent of the entire population - -who start college drop out. The situation is particularly dire for black and Latino students, those from poor families, and those who are first in their families to attend college. In The College Dropout Scandal, David Kirp outlines the scale of the problem and shows that it's fixable - -we already have the tools to boost graduation rates and shrink the achievement gap. Many college administrators know what has to be done, but many of them are not doing the job - -the dropout rate hasn't decreased for decades. It's not elite schools like Harvard or Williams who are setting the example, but places like City University of New York and Long Beach State, which are doing the hard work to assure that more students have a better education and a diploma. As in his New York Times columns, Kirp relies on vivid, on-the-ground reporting, conversations with campus leaders, faculty and students, as well as cogent overviews of cutting-edge research to identify the institutional reforms--like using big data to quickly identify at-risk students and get them the support they need -- and the behavioral strategies -- from nudges to mindset changes - -that have been proven to work. Through engaging stories that shine a light on an underappreciated problem in colleges today, David Kirp's hopeful book will prompt colleges to make student success a top priority and push more students across the finish line, keeping their hopes of achieving the American Dream alive.

Book Handbook of Educational Data Mining

Download or read book Handbook of Educational Data Mining written by Cristobal Romero and published by CRC Press. This book was released on 2010-10-25 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Educational Data Mining (EDM) provides a thorough overview of the current state of knowledge in this area. The first part of the book includes nine surveys and tutorials on the principal data mining techniques that have been applied in education. The second part presents a set of 25 case studies that give a rich overview of the problems that EDM has addressed. Researchers at the Forefront of the Field Discuss Essential Topics and the Latest Advances With contributions by well-known researchers from a variety of fields, the book reflects the multidisciplinary nature of the EDM community. It brings the educational and data mining communities together, helping education experts understand what types of questions EDM can address and helping data miners understand what types of questions are important to educational design and educational decision making. Encouraging readers to integrate EDM into their research and practice, this timely handbook offers a broad, accessible treatment of essential EDM techniques and applications. It provides an excellent first step for newcomers to the EDM community and for active researchers to keep abreast of recent developments in the field.