EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Use of Zero valent Metals in In situ Remediation of Contaminated Ground Water

Download or read book Use of Zero valent Metals in In situ Remediation of Contaminated Ground Water written by Robert W. Gillham and published by . This book was released on 1994 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Groundwater Geochemistry

Download or read book Groundwater Geochemistry written by Sughosh Madhav and published by John Wiley & Sons. This book was released on 2021-06-14 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains both practical and theoretical aspects of groundwater resources relating to geochemistry. Focusing on recent research in groundwater resources, this book helps readers to understand the hydrogeochemistry of groundwater resources. Dealing primarily with the sources of ions in groundwater, the book describes geogenic and anthropogenic input of ions into water. Different organic, inorganic and emerging contamination and salinity problems are described, along with pollution-related issues affecting groundwater. New trends in groundwater contamination remediation measures are included, which will be particularly useful to researchers working in the field of water conservation. The book also contains diverse groundwater modelling examples, enabling a better understanding of water-related issues and their management. Groundwater Geochemistry: Pollution and Remediation offers the reader: An understanding of the quantitative and qualitative challenges of groundwater resources An introduction to the environmental geochemistry of groundwater resources A survey of groundwater pollution-related issues Recent trends in groundwater conservation and remediation Mathematical and statistical modeling related to groundwater resources Students, lecturers and researchers working in the fields of hydrogeochemistry, water pollution and groundwater will find Groundwater Geochemistry an essential companion.

Book In Situ Remediation of Chromium Contaminated Groundwater Using Zero Valent Iron

Download or read book In Situ Remediation of Chromium Contaminated Groundwater Using Zero Valent Iron written by David W. Blowes and published by . This book was released on 1995 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Chlorinated Solvent Source Zone Remediation

Download or read book Chlorinated Solvent Source Zone Remediation written by Bernard H. Kueper and published by Springer Science & Business. This book was released on 2014-04-22 with total page 759 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to help engineers and scientists better understand dense nonaqueous phase liquid (DNAPL) contamination of groundwater and the methods and technology used for characterization and remediation. Remediation of DNAPL source zones is very difficult and controversial and must be based on state-of-the-art knowledge of the behavior (transport and fate) of nonaqueous phase liquids in the subsurface and site specific geology, chemistry and hydrology. This volume is focused on the characterization and remediation of nonaqueous phase chlorinated solvents and it is hoped that mid-level engineers and scientists will find this book helpful in understanding the current state-of-practice of DNAPL source zone management and remediation.

Book In Situ Chemical Oxidation for Groundwater Remediation

Download or read book In Situ Chemical Oxidation for Groundwater Remediation written by Robert L. Siegrist and published by Springer Science & Business Media. This book was released on 2011-02-25 with total page 715 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides comprehensive up-to-date descriptions of the principles and practices of in situ chemical oxidation (ISCO) for groundwater remediation based on a decade of intensive research, development, and demonstrations, and lessons learned from commercial field applications.

Book Nanoparticles and the Environment

Download or read book Nanoparticles and the Environment written by Jillian Fiona Banfield and published by ISSN. This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews in Mineralogy & Geochemistry (RiMG) volumes contain concise advances in theoretical and/or applied mineralogy, crystallography, petrology, and geochemistry.

Book Remediation of Heavy Metal Contamination in Sediments

Download or read book Remediation of Heavy Metal Contamination in Sediments written by Deborah Bolin Maxwell and published by . This book was released on 2007 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heavy metal contamination of soils, sediments and groundwater presents an ongoing source of hazardous and persistent environmental pollution. How best to remediate these contaminants is the impetus of continuing research efforts. Methods include containment, ex situ and in situ techniques. A successful in situ method utilizing a combination of emulsified liquid membranes, ELM, and zero-valent metal, ZVM, and bimetals has demonstrated impressive heavy metal reduction in 100 ppm solutions of Cd, Cu, Ni, Pb, Cr and U. This promising in situ method has been employed by the Industrial Chemistry Laboratory at the University of Central Florida and it has demonstrated considerable success in treating several environmental threats. Contaminated soils, surfaces, sediments and groundwater with offending agents such as trichloroethene, polychorobiphenyls and heavy metals have been treated utilizing emulsified liquid membrane systems containing zero-valent iron or bimetal particles. In vial studies, lead spiked sediments have shown repeatable 60% removal of lead after seven days of treatment. A persistent pattern emerged at ten days whereupon remediation levels began to drop. The current study was established to determine the reason for the decline at ten days and beyond. Questions addressed: Does the formation of an impeding oxide layer diminish the remediation capacity of the iron/magnesium system? Does the emulsion reach a maximum capacity to withdraw the contaminant? Do the soil components or the soil structure interfere with the access to the contaminant?

Book Abiotic Remediation of Nitro Aromatic Groundwater Contaminants by Zero Valent Iron

Download or read book Abiotic Remediation of Nitro Aromatic Groundwater Contaminants by Zero Valent Iron written by Abinash Agrawal and published by . This book was released on 1994 with total page 2 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent laboratory and field experiments have shown that some halogenated hydrocarbons undergo rapid reductive dehalogenation with zero-valent iron and the application of this process is being developed for in-situ remediation of contaminated groundwater. However, from can also reduce other organic substances and is commonly used to synthesize reduction products nitro compounds.

Book Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero Valent Metals

Download or read book Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero Valent Metals written by and published by . This book was released on 1999 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contaminated groundwater and surface waters are a problem throughout the United States and the world. In many instances, the types of contamination can be directly attributed to man's actions. For instance, the burial of chemical wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater and surface water contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements (including radioisotopes) that are soluble and mobile in soils and aquifers. Oxyanions of uranium, selenium, chromium, arsenic, technetium, and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. Uranium is a particularly widespread contaminant at most DOE sites including Oak Ridge, Rocky Flats, Hanford, Idaho (INEEL), and Fernald. The uranium contamination is associated with mining and milling of uranium ore (UMTRA sites), isotope separation and enrichment, and mixed waste and TRU waste burial. In addition, the careless disposal of halogenated solvents, such as carbon tetrachloride and trichloroethylene, has further contaminated many groundwaters at these sites. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used on an experimental basis at many DOE sites. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. We are performing fundamental investigations of the interactions of the relevant chlorinated solvents and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop th e fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures.

Book In Situ Groundwater Remediation Treatments   Natural Denitrification Study and Nano Zero Valent Iron Production

Download or read book In Situ Groundwater Remediation Treatments Natural Denitrification Study and Nano Zero Valent Iron Production written by David Ribas Fargas and published by . This book was released on 2017 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Freshwater is a scarce resource, threatened by an ongoing pollution, global climate change and industrialization. Among other freshwater sources, groundwater is by far the most important source of usable freshwater but due to the intrinsic nature of aquifers; low flow rates and a complex matrix compared to superficial waters, attempts to remove contaminants are more complex and slow. The aim of this thesis is to increase the knowledge of two remediation technologies: first, nitrate and nitrite removal based on natural occurring bioremediation and second, the production, reactivity and agglomeration of nano Zero Valent Iron (nZVI) particles. Natural occurring denitrification is a promising and partially implemented remediation approach but concerns about its performance out of the lab are justified. The following studies were carried out: evaluation of denitrification potential of wetlands from two sites in Denmark, soil characteristics and composition impact on denitrification highlighting the role and vertical distribution of organic matter, assessment of the Dissimilatory Nitrate Reduction to Ammonium (DNRA) importance as a denitrification competitor and effect of the seasonal variations. Regarding seasonal fluctuations, results showed that Heterotrophic Denitrification (HD) is an Arrhenius temperature dependant process. Although, observing that HD is a very resilient process, being dominant under all tested conditions, the importance of DNRA arose in dried and frozen soils, in addition a nitrite increase was observed. Concerning to organic matter studies, heterotrophic denitrification was only present in a very narrow superficial zone where Organic Matter (OM) was abundant. DOC and LOI could not express by themselves an absolute correlation with HD, however high amounts of DOC ensured enough quantity and quality of OM. DNRA was important only in the very superficial samples where an excessive content of OM could trigger it. On the other hand, nZVI is a very promising in situ new technology which can achieve the degradation of a broad range of contaminants, some being reluctant to previous remediation and bioremediation approaches. The purpose is to help to overcome some of the challenges that limit a widespread implementation of this technique, such as: the lack of a cost -effective- straightforward production method, uncertainness on the reactivity governing factors including the passivating oxide shell in commercial particles and the agglomeration driving factors. After replicating the previous milling methods in literature (where the iron ductility if using inert media was an insurmountable barrier to reach a nanoscale size), the need to break the iron flakes was stated. Several approaches were tested, finally the addition of micronized alumina produced nanoscale particles. Abrasion of the grinding media and breakage of flakes were the main mechanisms for the nZVI production. The physicochemical properties of the obtained particles were: a mean particle diameter of 0.16 μm (by SEM) and a specific surface area of 29.6 m2·g-1 and a reactivity toward Cr (VI), trichloroethylene and tetrachloroethylene higher than commercial nZVIs. In reference to the work performed assessing the effect of a passivation oxide layer on a commercial nZVI (NANOFER STAR, nanoIron s.r.o.) it was concluded that the oxide shield of surface-passivated nZVI particles significantly decreases the performance. A process to weaken the oxide shield was tested, it consisted in exposing the passivated nZVI to water for 36 hours at w iron / w water concentration of 0.2, just before the reaction with the pollutants. The results show that this activation process increases the effectiveness of the remediation and simplifies the overall handling of the nZVI.

Book Field Applications of in Situ Remediation Technologies

Download or read book Field Applications of in Situ Remediation Technologies written by and published by DIANE Publishing. This book was released on 1999 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoscale Zerovalent Iron Particles for Environmental Restoration

Download or read book Nanoscale Zerovalent Iron Particles for Environmental Restoration written by Tanapon Phenrat and published by Springer. This book was released on 2019-01-31 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first complete edited volume devoted to providing comprehensive and state-of-the art descriptions of science principles and pilot- and field-scaled engineering applications of nanoscale zerovalent iron particles (NZVI) for soil and groundwater remediation. Although several books on environmental nanotechnology contain chapters of NZVI for environmental remediation (Wiesner and Bottero (2007); Geiger and Carvalho-Knighton (2009); Diallo et al. (2009); Ram et al. (2011)), none of them include a comprehensive treatment of the fundamental and applied aspects of NZVI applications. Most devote a chapter or two discussing a contemporary aspect of NZVI. In addition, environmental nanotechnology has a broad audience including environmental engineers and scientists, geochemists, material scientists, physicists, chemists, biologists, ecologists and toxicologists. None of the current books contain enough background material for such multidisciplinary readers, making it difficult for a graduate student or even an experienced researcher or environmental remediation practitioner new to nanotechnology to catch up with the massive, undigested literature. This prohibits the reader from gaining a complete understanding of NZVI science and technology. In this volume, the sixteen chapters are based on more than two decades of laboratory research and development and field-scaled demonstrations of NZVI implementation. The authors of each chapter are leading researchers and/or practitioners in NZVI technology. This book aims to be an important resource for all levels of audiences, i.e. graduate students, experienced environmental and nanotechnology researchers, and practitioners evaluating environmental remediation, as it is designed to involve everything from basic to advanced concepts.

Book Field Applications of In Situ Remediation Technologies

Download or read book Field Applications of In Situ Remediation Technologies written by and published by . This book was released on 1998 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Approximately 85% of the hazardous waste sites in the United States have contaminated ground water. The conventional approach for remediating contaminated ground water has been to extract the contaminated water, treat it above ground, and reinject or discharge the clean water ("pump- and-treat"). The recovered contaminants must be disposed of separately. It is becoming increasingly apparent that pump-and-treat technologies require considerable investment over extended period of time, and often times do not actually clean up the source of the contamination. Current policies and law stress "permanent" remedies over containment. Consequently, there is considerable interest and effort being expended on alternative, innovative treatment technologies for contaminated ground water. This report is one in a series that document recent pilot demonstrations and full-scale applications that either treat soil and ground water in place or increase the solubility and mobility of contaminants to improve their removal by other remediation technologies. It is hoped that this information will allow more regular consideration of new, less costly, and more effective technologies to address the problems associated with hazardous waste sites and petroleum.

Book Water Pollution and Remediation  Heavy Metals

Download or read book Water Pollution and Remediation Heavy Metals written by Inamuddin and published by Springer Nature. This book was released on 2020-11-18 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pollution of waters by toxic metals is accelerating worldwide due to industrial and population growth, notably in countries having poor environmental laws, resulting in many diseases such as cancer. Classical remediation techniques are limited. This books reviews new, advanced or improved techniques for metal removal, such as hybrid treatments, nanotechnologies and unconventional adsorbents, e.g. metal-organic frameworks. Contaminants include rare earth elements, arsenic, lead, cadmium, chromium, copper and effluents from the electronic, textile, agricultural and pharmaceutical industries.

Book Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero valent Metals  Annual Progress Report  September 1  1996  August 31  1997

Download or read book Fundamental Studies of the Removal of Contaminants from Ground and Waste Waters Via Reduction by Zero valent Metals Annual Progress Report September 1 1996 August 31 1997 written by and published by . This book was released on 1997 with total page 2 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contaminated groundwater is a problem throughout the US and the world. In many instances the tvpes of contamination can be directly attributed to man''s actions. For instance, the burial of wastes, casual disposal of solvents in unlined pits, and the development of irrigated agriculture have all contributed to groundwater contamination. The kinds of contaminants include chlorinated solvents and toxic trace elements that are soluble and mobile in soils and aquifers. Oxyanions of selenium. chromium. uranium. arsenic. and chlorine (as perchlorate) are frequently found as contaminants on many DOE sites. In addition. the careless disposal of cleaning solvents. such as carbon tetrachloride and trichloroethylene. has further contaminated many groundwaters at these sites. In agricultural areas of the western US, shallow groundwaters have become contaminated with high levels of selenate, chromate, and uranyl. The management of these waters requires treatment to remove the contaminants before reuse or surface water disposal. In one instance in the Central Valley of California. the discharge of selenate-contaminated shallow groundwater to a wildlife refuge caused catastrophic bird deaths and deformities of embryos. At sites where solid-propellant rocket motors were tested or disposed of, high concentrations of perchlorate and trichloroethylene are being found in the groundwater. A potential remediation method for many of these oxyanions and chlorinated-solvents is to react the contaminated water with zero-valent iron. In this reaction, the iron serves as both an electron source and as a catalyst. Elemental iron is already being used, on an experimental basis, for the reductive dechlorination of solvents and the removal of toxic trace elements. Both in situ reactive barriers and above-ground reactors are being developed for this purpose. However, the design and operation of these treatment systems requires a detailed process-level understanding of the interactions between the contaminants and the iron surfaces. Only limited success has been achieved in the field, partly because the basic surface chemical reactions are not well understood. The authors are performing fundamental investigations of the interactions of the relevant chlorinated solvents, trace elements, and trace element-containing compounds with single- and poly-crystalline Fe surfaces. The aim of this work is to develop the fundamental physical and chemical understanding that is necessary for the development of cleanup techniques and procedures. The authors are perforrming both bulk chemical measurements of the reduction reactions and surface science studies of model chemical systems. During this first year of funding, the authors have already made significant progress in both areas. Initially, they have focused primarily on the reduction of selenate by elemental iron. They have also performed some work with chromate, perchlorate, uranyl, and carbon tetrachloride, as well. In the following sections, some of the progress is described.