EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Unified Power Flow Controller Technology and Application

Download or read book Unified Power Flow Controller Technology and Application written by Jijun Yin and published by Academic Press. This book was released on 2017-06-16 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unified Power Flow Controller Technology and Application provides comprehensive coverage on UPFC technology, providing a range of topics, including design principle, control and protection, and insulation coordination. It summarizes all the most up-to-date research and practical achievements that are related to UPFC and MMC technology, including test techniques for main components, closed-loop test techniques for control and protection systems, and onsite techniques for implementing UPFC projects. The book is an essential reference book for both academics and engineers working in power system protection control, power system planning engineers, and HVDC FACTS related areas. Readers will not only obtain the detailed information regarding theoretical analysis and practical application of UPFC, but also the control mechanism of advanced MMC technology, both of which are not common topics in previously published books. Shows how to use modular multilevel converters (MMC) to implement UPFC that lead to cost-effective and reliable systems Draws from the most up-to-date research and practical applications Teaches electromechanical/electromagnetic transient simulation techniques and real-time closed-loop simulation test techniques of the MMC based UPFC

Book Study the Power Flow Control of a Power System with Unified Power Flow Controller

Download or read book Study the Power Flow Control of a Power System with Unified Power Flow Controller written by Vakula Peesari and published by . This book was released on 2010 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrical power systems is a large interconnected network that requires a careful design to maintain the system with continuous power flow operation without any limitations. Flexible Alternating Current Transmission System (FACTS) is an application of a power electronics device to control the power flow and to improve the system stability of a power system. Unified Power Flow Controller (UPFC) is a versatile device in the FACTS family of controllers which has the ability to simultaneously control all the transmission parameters of power systems i.e. voltage, impedance and phase angle which determines the power flow of a transmission line. This project proposes a case study to control the power flow of a power system with UPFC. In this study, I am considering a standard 5-bus network for the analysis. Power flow equations are solved using Newton Raphson's algorithm and the simulations of the algorithm are done in MATLAB. The results of the network with and without UPFC are compared in terms of active and reactive power flow in the transmission line at the bus to analyze the performance of UPFC.

Book Transient Stability and Power Flow Models of the Unified Power Flow Controller for Various Control Strategies

Download or read book Transient Stability and Power Flow Models of the Unified Power Flow Controller for Various Control Strategies written by Reeve, J. (John) and published by . This book was released on 2004 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Design and Simulation of Unified Power Flow Controller with Grid Storage

Download or read book Design and Simulation of Unified Power Flow Controller with Grid Storage written by Christopher Beaudoin and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power flow between two transmission systems across an uncontrolled interface can be problematic if there is unequal sharing between the tie lines. System configuration changes such as generation dispatch, or out of service elements can cause thermal overloads. In addition, some weaker areas of the system which may have insufficient transmission can have difficultly supporting the voltage at buses with high loading particularly after the loss of one element. This thesis presents a real transmission system which has two problems: a thermal limitation caused by unequal tie-sharing across an uncontrolled interface, and a post-fault voltage stability concern. Various potential solutions are analyzed and shown to address one or the other of these two problems; none of which were capable of solving both. A Unified Power Flow Controller (UPFC) is proposed which can effectively address both problems and can provide additional benefit in the form of a grid storage interface. The operational characteristics of a UPFC are analyzed and used to develop an electrical model and control system topology. The model with its control system is implemented in PSCAD. The UPFC is proven to be capable of effectively addressing the thermal limitation and voltage stability issues of the system. Further, a battery is added to the UPFC to provide grid energy storage. Cost saving measures through controller design are also proposed and implemented. This work demonstrates that a UPFC can be an effective solution to typical problems (such as thermal and voltage constraints) faced by a transmission system. A UPFC with grid storage can also provide an alternative to building costly transmission lines or generation by enhancing reliability, reducing demand on generation cause by system peaks, smoothing intermittent generation, etc.

Book Optimal Control Schemes for Power System with Unified Power Flow Controller  UPFC

Download or read book Optimal Control Schemes for Power System with Unified Power Flow Controller UPFC written by Dr. Hidaia Mahmood Alassouli and published by Dr. Hidaia Mahmood Alassouli. This book was released on 2021-04-18 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: FACTS are one aspect of power electronics revolution that is taking place in all areas of electrical energy. A variable of powerful semiconductor devices not only offer the advantage of high speed and reliability of switching but, more importantly, the opportunity offered by a variety of innovative circuit concepts based on these power devices enhance the value of electric energy. In generation area, the potential application of power electronics is largely in renewable generation. Photovoltaic and fuel cells requires conversion of dc to ac. Generation with variable speed is necessary for economic viability of wind and small hydro generators. Variable-speed wind generators and small hydro generators requires conversion of variable frequency ac to power system frequency. These applications of power electronics in renewable generation area require converter sizes in the range of few kilowatts to few megawatts. In coming decades, electrical energy storage is expected to be widely used in power systems as capacitor, battery and superconducting magnet technologies move forward. Batteries are widely used already for emergency power supplies. These require ac/dc/ac converters in the range of a few kilowatts to a few tens of megawatts. On the other hand, variable speed hydro storage requires converters of up to a few hundred megawatts. In transmission area, application of power electronics consists of High Voltage Direct Current (HVDC) power transmission and FACTS. HVDC is often an economical way to interconnect certain power systems, which are suited in different regions separated by long distances or those have different frequencies or incompatible frequency control. HVDC involves conversion of ac to dc at one end and conversion of dc to ac at the other end. What is most interesting for transmission planners is that FACTS opens up new opportunities for controlling power and enhancing the usable capacity of the lines. The possibility that current through a line can be controlled at reasonable cost enables a large potential of increasing the capacity of the existing lines with larger conductors, and use one of the FACTS controllers to enable corresponding power to flow through lines under normal and contingency conditions. These opportunities arise through the ability of FACTS controllers to control the interrelated parameters that govern the operation of transmission line including series impedance, shunt impedance, current, voltage, phase angle, and the damping of oscillations at various frequencies below the rated frequency. In distribution area, an exciting opportunity called Custom Power. The custom power concept incorporates power electronics controllers and switching equipment, one or more of which can be used to provide a value-added service to the customers. In general, these custom service applications represent power electronics in the range of few tens of kilowatts to few ten of megawatts of conversion or switching equipment between the utility supply and customer. On the end-user side, power electronics conversion and switching technology has been fast growing area. Complementing the Custom Power technology is the whole area of power conditioning technology used by customers, under the term Power Quality. Uninterruptible power supplies (UPS) and voltage regulators represent the major growth area in power electronics. In end use, the converter sizes range from a few watts to ten of megawatts. The term active filter is a general one and is applied to a group of power electronic circuits incorporating power switching devices and passive energy storage circuit elements such as inductors and capacitors. The functions of these circuits vary depending on the applications. They are generally used for controlling current harmonics in supply networks at the low and medium voltage distribution level or for reactive power and/or voltage control at high voltage distribution level. These functions may be combined in a single circuit or in separate active filters. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together. Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. · Part 1: Gives the description of optimal control design. · Part 2: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.

Book 2745 4 2022   IEEE Guide for Technology of Unified Power Flow Controller Using Modular Multilevel Converter  Part 4  Control and Protection Application

Download or read book 2745 4 2022 IEEE Guide for Technology of Unified Power Flow Controller Using Modular Multilevel Converter Part 4 Control and Protection Application written by and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Virtual Equivalent System Approach for Stability Analysis of Model based Control Systems

Download or read book Virtual Equivalent System Approach for Stability Analysis of Model based Control Systems written by Weicun Zhang and published by Springer Nature. This book was released on 2020-06-05 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book puts forward the concept of a virtual equivalent system (VES) based on theoretical analysis and simulation results. The new concept will facilitate the development of a unified framework for analyzing the stability and convergence of self-tuning control (STC) systems, and potentially, of all adaptive control systems. The book then shows that a time-varying STC system can be converted into a time-invariant system using a certain nonlinear compensation signal, which reduces the complexity and difficulty of stability and convergence analysis. In closing, the VES concept and methodology are used to assess the stability of multiple model adaptive control (MMAC) systems and T-S model-based fuzzy control systems.

Book Modeling and Control of the Hybrid Power Flow Controller for Steady state and Dynamic Studies and Applications

Download or read book Modeling and Control of the Hybrid Power Flow Controller for Steady state and Dynamic Studies and Applications written by Behnam Tamimi and published by . This book was released on 2017 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Flexible ac transmission system (FACTS) controllers offer new opportunities to better control power systems, and can address some of the critical challenges faced by the grid, especially in the context of smart grids. Furthermore, the smartening of distribution systems with distributed generation, storage devices, and intelligent loads have created challenges for the operation of distribution feeders, which can be addressed adequately with power-electronics based controllers and FACTS controllers for distribution systems. However, the capital intensive nature of these controllers is a major obstacle for a wide application of this technology in power systems. A cost effective FACTS controller has been introduced in the literature, which yields operating characteristics similar to those of the versatile Unified Power Flow Controller (UPFC). This device consists of converters as well as passive components, and is referred to as the Hybrid Power Flow Controller (HPFC). The study of the HPFC and its performance in electric power systems requires adequate and relevant models representing the device behavior according to the intended studies, such as steady state or time-domain dynamic analyses; moreover, the benefits of an HPFC are determined by its limits and operating constraints. Therefore, static and dynamic models of the HPFC for transmission and distribution system applications are proposed and studied in this work. First, steady-state models of the HPFC for power flow and optimal power flow (OPF) studies are proposed in this work, considering its multiple control modes and operating constraints. Thus, a strategy for control limit handling in power flow calculations is proposed, while considering a discrete passive shunt capacitor bank in the device. Moreover, an OPF model of the device is proposed and explained in detail, representing all the device control and physical limits as constraints in the mathematical formulation, so that the HPFC can be optimally dispatched as a part of the transmission system control assets; this model is used to determine the optimal ratings of the device based on a cost--benefit analysis. The proposed power flow and OPF models are tested and validated based on several loadability studies on a two-area benchmark test system. The HPFC power flow model is also tested and applied to a detailed model of Ontario grid and its neighboring networks with more than 6000 buses. The analyses demonstrate the application of the models for planning and operation studies, evaluating the performance and the effectiveness of the device based on realistic studies and scenarios. Second, the merits and the added value of the HPFC application to distribution systems are discussed here through detailed modeling and time-domain simulations, examining its impact on a distribution network under different conditions. Thus, a detailed dynamic representation of the HPFC is developed and implemented in PSCAD/EMTDC, describing and proposing control strategies to properly operate this controller in distribution system applications, such as an effective and simple procedure for starting-up the device. The developed model is used to demonstrate the effectiveness of the controller for solving problems in distribution systems, such as voltage sags associated with feeder faults and power flow fluctuations due to intermittent renewable generation using a benchmark network as an illustrative example.

Book Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers

Download or read book Power Flow Control Solutions for a Modern Grid Using SMART Power Flow Controllers written by Kalyan K. Sen and published by John Wiley & Sons. This book was released on 2021-12-13 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power Flow Control Solutions for a Modern Grid using SMART Power Flow Controllers Provides students and practicing engineers with the foundation required to perform studies of power system networks and mitigate unique power flow problems Power Flow Control Solutions for a Modern Grid using SMART Power Flow Controllers is a clear and accessible introduction to power flow control in complex transmission systems. Starting with basic electrical engineering concepts and theory, the authors provide step-by-step explanations of the modeling techniques of various power flow controllers (PFCs), such as the voltage regulating transformer (VRT), the phase angle regulator (PAR), and the unified power flow controller (UPFC). The textbook covers the most up-to-date advancements in the Sen transformer (ST), including various forms of two-core designs and hybrid architectures for a wide variety of applications. Beginning with an overview of the origin and development of modern power flow controllers, the authors explain each topic in straightforward engineering terms—corroborating theory with relevant mathematics. Throughout the text, easy-to-understand chapters present characteristic equations of various power flow controllers, explain modeling in the Electromagnetic Transients Program (EMTP), compare transformer-based and mechanically-switched PFCs, discuss grid congestion and power flow limitations, and more. This comprehensive textbook: Describes why effective Power Flow Controllers should be viewed as impedance regulators Provides computer simulation codes of the various power flow controllers in the EMTP programming language Contains numerous worked examples and data cases to clarify complex issues Includes results from the simulation study of an actual network Features models based on the real-world experiences the authors, co-inventors of first-generation FACTS controllers Written by two acknowledged leaders in the field, Power Flow Control Solutions for a Modern Grid using SMART Power Flow Controllers is an ideal textbook for graduate students in electrical engineering, and a must-read for power engineering practitioners, regulators, and researchers.

Book Introduction to FACTS Controllers

Download or read book Introduction to FACTS Controllers written by Kalyan K. Sen and published by John Wiley & Sons. This book was released on 2009-10-13 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Demystifies FACTS controllers, offering solutions to power control and power flow problems Flexible alternating current transmission systems (FACTS) controllers represent one of the most important technological advances in recent years, both enhancing controllability and increasing power transfer capacity of electric power transmission networks. This timely publication serves as an applications manual, offering readers clear instructions on how to model, design, build, evaluate, and install FACTS controllers. Authors Kalyan Sen and Mey Ling Sen share their two decades of experience in FACTS controller research and implementation, including their own pioneering FACTS design breakthroughs. Readers gain a solid foundation in all aspects of FACTS controllers, including: Basic underlying theories Step-by-step evolution of FACTS controller development Guidelines for selecting the right FACTS controller Sample computer simulations in EMTP programming language Key differences in modeling such FACTS controllers as the voltage regulating transformer, phase angle regulator, and unified power flow controller Modeling techniques and control implementations for the three basic VSC-based FACTS controllers—STATCOM, SSSC, and UPFC In addition, the book describes a new type of FACTS controller, the Sen Transformer, which is based on technology developed by the authors. An appendix presents all the sample models that are discussed in the book, and the accompanying FTP site offers many more downloadable sample models as well as the full-color photographs that appear throughout the book. This book is essential reading for practitioners and students of power engineering around the world, offering viable solutions to the increasing problems of grid congestion and power flow limitations in electric power transmission systems.

Book Laboratory Implementation of Unified Power Flow Controller Hardware in loop Simulation

Download or read book Laboratory Implementation of Unified Power Flow Controller Hardware in loop Simulation written by Keyou Wang and published by . This book was released on 2008 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: "One of the most promising network controllers for the bulk power system is the family of power electronics-based controllers, known as "flexible AC transmission system" (FACTS) devices. FACTS devices work by modifying power flow in individual lines of the power grid, maintaining voltage stability, and damping oscillations. The rapid development of the power electronics industry has made FACTS devices increasingly attractive for utility deployment due to their flexibility and ability to effectively control power system dynamics. The primary function of the FACTS is to control the transmission line power flow; the secondary functions of the FACTS can be voltage control, transient stability improvement and oscillation damping. Although considerable FACTS research work has concentrated on developing control strategies via simulation, there is a general lack of experimental verification of many of the proposed controls. In order to fully understand how to effectively incorporate FACTS devices into existing power systems, a hardware prototype for verification is necessary in addition to software simulation. Experimental studies provide valuable data to evaluate models, test proposed control algorithms, and analyze dynamic performance. Furthermore, experimental studies provide the basis with which to predict the device performance in the actual power system operation. Traditional software-based simulation has the disadvantage of being unable to exactly replicate real operational conditions. On the other hand, a small laboratory power system is not capable of fully capturing the depth and breadth of large-scale power system dynamics. One way to bridge the gap between simulation and real conditions is to combine real-time simulation (RTS) and hardware-in-the-loop (HIL). The contribution of this work is the development of the hardware-software co-design process required to successfully implement the FIL"--Abstract, leaves iii-iv.

Book Optimal Control Schemes for Power System with Unified Power Flow Controller  UPFC

Download or read book Optimal Control Schemes for Power System with Unified Power Flow Controller UPFC written by Hedaya Mahmood Alasooly and published by . This book was released on 2021-03-18 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is most interesting for transmission planners is that FACTS opens up new opportunities for controlling power and enhancing the usable capacity of the lines. The possibility that current through a line can be controlled at reasonable cost enables a large potential of increasing the capacity of the existing lines with larger conductors, and use one of the FACTS controllers to enable corresponding power to flow through lines under normal and contingency conditions. These opportunities arise through the ability of FACTS controllers to control the interrelated parameters that govern the operation of transmission line including series impedance, shunt impedance, current, voltage, phase angle, and the damping of oscillations at various frequencies below the rated frequency. In distribution area, an exciting opportunity called Custom Power. The custom power concept incorporates power electronics controllers and switching equipment, one or more of which can be used to provide a value-added service to the customers. In general, these custom service applications represent power electronics in the range of few tens of kilowatts to few ten of megawatts of conversion or switching equipment between the utility supply and customer. On the end-user side, power electronics conversion and switching technology has been fast growing area. Complementing the Custom Power technology is the whole area of power conditioning technology used by customers, under the term Power Quality. Uninterruptible power supplies (UPS) and voltage regulators represent the major growth area in power electronics. In end use, the converter sizes range from a few watts to ten of megawatts. The term active filter is a general one and is applied to a group of power electronic circuits incorporating power switching devices and passive energy storage circuit elements such as inductors and capacitors. The functions of these circuits vary depending on the applications. They are generally used for controlling current harmonics in supply networks at the low and medium voltage distribution level or for reactive power and/or voltage control at high voltage distribution level. These functions may be combined in a single circuit or in separate active filters. Most of the control schemes introduced in the existing papers were designed either for eliminating current harmonics or eliminating voltage flickers or for load flow control. So, this work is devoted to find a proper optimal control schemes for a system with series or shunt or series and shunt converters that can provide all functions together. Various optimal control schemes will be designed for systems with series, shunt and series-shunt converters with the objective to control the load flow through a lines and to eliminate current harmonics and voltage flickers with different strategies for tracking. - Part 1: Gives the description of optimal control design. - Part 2: Case studies to design different optimal control schemes for system with UPFC unit to control the power flow, eliminate voltage flicker and eliminate current harmonics. The case studies were repeated for system with only series or shunt converters.