EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Unified Dynamics based Motion Planning Algorithm for Autonomous Underwater Vehicle Manipulator Systems  UVMS

Download or read book Unified Dynamics based Motion Planning Algorithm for Autonomous Underwater Vehicle Manipulator Systems UVMS written by Tarun K. Podder and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We have proposed a new unified dynamics-based motion planning algorithm that can generate both kinematically admissible and dynamically feasible joint-space trajectories for systems composed of heterogeneous dynamics. We have then extended this algorithm for an autonomous underwater vehicle-manipulator system, where the dynamic response of the vehicle is much slower than that of the manipulator. We have also exploited the kinemetic redundancy to accommodate the thruster/actuator faults and saturation and also to minimize hydrodynamic drag. We have incorporated thruster dynamics when modeling the UVMS. Although, some researchers have exploited kinematic redundancy for optimizing various criteria, but those work have mainly addressed to problems with land-based robotics or space-robotics. Hardly any motion planning algorithm has been developed for autonomous underwater vehiclemanipulator system. In this research, work we have formulated a new unified motion planning algorithm for a heterogeneous underwater robotic system that has a vastly different dynamic bandwidth. The results from computer simulation demonstrate the effectiveness of the proposed method. It shows that the proposed algorithm not only improves the trajectory tracking performance but also significantly reduce the energy consumption and the power requirements for the operation of an autonomous UVMS. We have not presented results from Case II (Total Decomposition) because of the length of the paper. However, these results are comparable to the conventional motion planning approach. In future, instead of Fourier decomposition, one can try to use wavelet approach to decompose the task-space trajectory into system's sub-component compatible segments. There are a few drawbacks of this paper as well. We used a model-based control technique to evaluate our planning algorithm. However, the underwater environment is uncertain and we need to use adaptive control techniques in future. Although the fault-tolerant control algorithm has been experimentally verified, the other proposed algorithms need to be validated by experiments.

Book Intelligent Marine Robotics Modelling  Simulation and Applications

Download or read book Intelligent Marine Robotics Modelling Simulation and Applications written by Cheng Siong Chin and published by MDPI. This book was released on 2020-04-24 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The biennial Congress of the Italian Society of Oral Pathology and Medicine (SIPMO) is an International meeting dedicated to the growing diagnostic challenges in the oral pathology and medicine field. The III International and XV National edition will be a chance to discuss clinical conditions which are unusual, rare, or difficult to define. Many consolidated national and international research groups will be involved in the debate and discussion through special guest lecturers, academic dissertations, single clinical case presentations, posters, and degree thesis discussions. The SIPMO Congress took place from the 17th to the 19th of October 2019 in Bari (Italy), and the enclosed copy of Proceedings is a non-exhaustive collection of abstracts from the SIPMO 2019 contributions.

Book Modelling and Control of Mechatronic and Robotic Systems

Download or read book Modelling and Control of Mechatronic and Robotic Systems written by Alessandro Gasparetto and published by MDPI. This book was released on 2021-09-02 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Currently, the modelling and control of mechatronic and robotic systems is an open and challenging field of investigation in both industry and academia. The book encompasses the kinematic and dynamic modelling, analysis, design, and control of mechatronic and robotic systems, with the scope of improving their performance, as well as simulating and testing novel devices and control architectures. A broad range of disciplines and topics are included, such as robotic manipulation, mobile systems, cable-driven robots, wearable and rehabilitation devices, variable stiffness safety-oriented mechanisms, optimization of robot performance, and energy-saving systems.

Book Underwater Robots

Download or read book Underwater Robots written by Gianluca Antonelli and published by . This book was released on 2006-06-13 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the main control aspects in underwater manipulation tasks. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is deeply investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided; experimental results obtained with the vehicle ODIN are presented. The presence of a manipulator is further studied in the aspects of kinematic, dynamic and interaction control. The purpose of this second edition is to add material n.

Book Underwater Biomimetic Vehicle Manipulator System

Download or read book Underwater Biomimetic Vehicle Manipulator System written by Shuo Wang and published by Springer Nature. This book was released on 2023-04-27 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the design and control of biomimetic underwater robots. It explains the six aspects of the underwater biomimetic vehicle- manipulator system in detail and provides practical examples. This book is the authors’ long-term exploration of the theoretical and technical issues in the development of the underwater biomimetic vehicle-manipulator system and is written based on more than 15 years of scientific research and practical experience. This book is a helpful reference for the researchers, engineers, master and Ph.D. students in the field of biomimetic underwater robots.

Book Underwater Robots

Download or read book Underwater Robots written by Gianluca Antonelli and published by Springer. This book was released on 2018-04-05 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: A classic in underwater robotics. One of the first volumes in the “Springer Tracts in Advanced Robotics” series, it has been a bestseller through the previous three editions. Fifteen years after the publication of the first edition, the fourth edition comes to print. The book addresses the main control aspects in underwater manipulation tasks. With respect to the third edition, it has been revised, extended and some concepts better clustered. The mathematical model with significant impact on the control strategy is discussed. The problem of controlling a 6-degrees-of-freedoms autonomous underwater vehicle is investigated and a survey of fault detection/tolerant strategies for unmanned underwater vehicles is provided. Inverse kinematics, dynamic and interaction control for underwater vehicle-manipulator systems are then discussed. The code used to generate most of the numerical simulations is made available and briefly discussed.

Book Motion Planning of Autonomous Underwater Vehicle manipulator Systems

Download or read book Motion Planning of Autonomous Underwater Vehicle manipulator Systems written by Tarun Kanti Podder and published by . This book was released on 2000 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Sampling based Model Predictive Control Approach to Motion Planning for Autonomous Underwater Vehicles

Download or read book A Sampling based Model Predictive Control Approach to Motion Planning for Autonomous Underwater Vehicles written by Charmane Venda Caldwell and published by . This book was released on 2011 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: ABSTRACT: In recent years there has been a demand from the commercial, research and military industries to complete tedious and hazardous underwater tasks. This has lead to the use of unmanned vehicles, in particular autonomous underwater vehicles (AUVs). To operate inthis environment the vehicle must display kinematically and dynamically feasible trajectories. Kinematic feasibility is important to allow for the limited turn radius of an AUV, while dynamic feasibility can take into consideration limited acceleration and braking capabilities due to actuator limitations and vehicle inertia. Model Predictive Control (MPC) is a method that has the ability to systematically handle multi-input multi-output (MIMO) control problems subject to constraints. It finds the control input by optimizing a cost function that incorporates a model of the system to predict future outputs subject to the constraints. This makes MPC a candidate method for AUV trajectory generation. However, traditional MPC has difficulties in computing control inputs in real time for processes with fast dynamics. This research applies a novel MPC approach, called Sampling-Based Model Predictive Control (SBMPC), to generate kinematically or dynamically feasible system trajectories for AUVs. The algorithm combines the benefits of sampling-based motion planning with MPC while avoiding some of the major pitfalls facing both traditional sampling-based planning algorithms and traditional MPC, namely large computation times and local minimum problems. SBMPC is based on sampling (i.e., discretizing) the input space at each sample period and implementing a goal-directed optimization method (e.g., A?) in place of standard nonlinear programming. SBMPC can avoid local minimum, has only two parameters to tune, and has small computational times that allows it to be used online fast systems. A kinematic model, decoupled dynamic model and full dynamic model are incorporated in SBMPC to generate a kinematic and dynamic feasible 3D path. Simulation results demonstrate the efficacy of SBMPC in guiding an autonomous underwater vehicle from a start position to a goal position in regions populated with various types of obstacles.

Book Advanced Model Predictive Control for Autonomous Marine Vehicles

Download or read book Advanced Model Predictive Control for Autonomous Marine Vehicles written by Yang Shi and published by Springer Nature. This book was released on 2023-02-13 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of marine control system design related to underwater robotics applications. In particular, it presents novel optimization-based model predictive control strategies to solve control problems appearing in autonomous underwater vehicle applications. These novel approaches bring unique features, such as constraint handling, prioritization between multiple design objectives, optimal control performance, and robustness against disturbances and uncertainties, into the control system design. They therefore form a more general framework to design marine control systems and can be widely applied. Advanced Model Predictive Control for Autonomous Marine Vehicles balances theoretical rigor – providing thorough analysis and developing provably-correct design conditions – and application perspectives – addressing practical system constraints and implementation issues. Starting with a fixed-point positioning problem for a single vehicle and progressing to the trajectory-tracking and path-following problem of the vehicle, and then to the coordination control of a large-scale multi-robot team, this book addresses the motion control problems, increasing their level of challenge step-by-step. At each step, related subproblems such as path planning, thrust allocation, collision avoidance, and time constraints for real-time implementation are also discussed with solutions. In each chapter of this book, compact and illustrative examples are provided to demonstrate the design and implementation procedures. As a result, this book is useful for both theoretical study and practical engineering design, and the tools provided in the book are readily applicable for real-world implementation.

Book Oceans 2003

Download or read book Oceans 2003 written by and published by . This book was released on 2003 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Autonomous Underwater Vehicles

Download or read book Autonomous Underwater Vehicles written by Sabiha Wadoo and published by CRC Press. This book was released on 2017-12-19 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Underwater vehicles present some difficult and very particular control system design problems. These are often the result of nonlinear dynamics and uncertain models, as well as the presence of sometimes unforeseeable environmental disturbances that are difficult to measure or estimate. Autonomous Underwater Vehicles: Modeling, Control Design, and Simulation outlines a novel approach to help readers develop models to simulate feedback controllers for motion planning and design. The book combines useful information on both kinematic and dynamic nonlinear feedback control models, providing simulation results and other essential information, giving readers a truly unique and all-encompassing new perspective on design. Includes MATLAB® Simulations to Illustrate Concepts and Enhance Understanding Starting with an introductory overview, the book offers examples of underwater vehicle construction, exploring kinematic fundamentals, problem formulation, and controllability, among other key topics. Particularly valuable to researchers is the book’s detailed coverage of mathematical analysis as it applies to controllability, motion planning, feedback, modeling, and other concepts involved in nonlinear control design. Throughout, the authors reinforce the implicit goal in underwater vehicle design—to stabilize and make the vehicle follow a trajectory precisely. Fundamentally nonlinear in nature, the dynamics of AUVs present a difficult control system design problem which cannot be easily accommodated by traditional linear design methodologies. The results presented here can be extended to obtain advanced control strategies and design schemes not only for autonomous underwater vehicles but also for other similar problems in the area of nonlinear control.

Book Underwater Vehicle Control and Communication Systems Based on Machine Learning Techniques

Download or read book Underwater Vehicle Control and Communication Systems Based on Machine Learning Techniques written by Tien Anh Tran and published by CRC Press. This book was released on 2023-12-04 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of intelligent transportation systems, especially autonomous underwater vehicles, has become significant in marine engineering, with an aim to enhance energy efficiency management and communication systems. This book covers different aspects of optimization of autonomous underwater vehicles and their propulsion systems via machine learning techniques. It further analyses hydrodynamic characteristics including the study of experimental investigation combined with hydrodynamic characteristics backed by MATLAB® codes and simulation study results. Features: Covers utilization of machine learning techniques with a focus on marine science and ocean engineering. Details effect of the intelligent transportation system (ITS) into the sustainable environment and ecology system. Evaluates performance of particle swarm intelligence-based optimization techniques. Reviews propulsion performance of the remote-controlled vehicles based on machine learning techniques. Includes MATLAB® examples and simulation study results. This book is aimed at graduate students and researchers in marine engineering and technology, computer science, and control system engineering.

Book Development and Testing of Navigation Algorithms for Autonomous Underwater Vehicles

Download or read book Development and Testing of Navigation Algorithms for Autonomous Underwater Vehicles written by Francesco Fanelli and published by Springer. This book was released on 2019-04-16 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on pose estimation algorithms for Autonomous Underwater Vehicles (AUVs). After introducing readers to the state of the art, it describes a joint endeavor involving attitude and position estimation, and details the development of a nonlinear attitude observer that employs inertial and magnetic field data and is suitable for underwater use. In turn, it shows how the estimated attitude constitutes an essential type of input for UKF-based position estimators that combine position, depth, and velocity measurements. The book discusses the possibility of including real-time estimates of sea currents in the developed estimators, and highlights simulations that combine real-world navigation data and experimental test campaigns to evaluate the performance of the resulting solutions. In addition to proposing novel algorithms for estimating the attitudes and positions of AUVs using low-cost sensors and taking into account magnetic disturbances and ocean currents, the book provides readers with extensive information and a source of inspiration for the further development and testing of navigation algorithms for AUVs.

Book Motion Control of Autonomous Underwater Vehicles Using Advanced Model Predictive Control Strategy

Download or read book Motion Control of Autonomous Underwater Vehicles Using Advanced Model Predictive Control Strategy written by Chao Shen and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing reliance on oceans, rivers and waterways in a spectrum of human activities have demonstrated the large demand for advanced marine technologies that facilitate multifarious in-water services and tasks. The autonomous underwater vehicle (AUV) is a representative marine technology which has been contributing continuously to many ocean-related fields. An elaborate control system is essential to AUVs. However, AUVs present difficult control system design problems due to their nonlinear dynamics, the unpredictable environment and the poor knowledge about the hydrodynamic coupling of the vehicle degrees of freedom. When designing the motion controller, the practical constraints on the AUV system such as limited perceiving, computing and actuating capabilities should also be respected. The model predictive control (MPC) is an advanced control technology that leverages optimization to calculate the control command. Thanks to the optimization nature, MPC can conveniently handle the complex nonlinearity in system dynamics as well as the state and control constraints. MPC takes the receding horizon control paradigm which gains satisfactory robustness against model uncertainties and external disturbances. Therefore, MPC is an ideal candidate for solving the AUV motion control problems. On the other hand, since the optimization is solved by iterative numerical algorithms, the obtained control signal is an implicit function of the system state, which complicates the characterization of the closed-loop properties. Moreover, the nonlinear system dynamics makes the online optimization nonlinear programming (NLP) problems. The high computational complexity may cause an issue on the real-time control for embedded platforms with limited computing resources. In order to push the advanced MPC technology towards real-world AUV applications, this PhD dissertation is concerned with fundamental AUV motion control problems and attempts to address the aforementioned challenges and provide novel solutions. This dissertation proceeds with Chapter 1 by providing state-of-the-art introductions to related research areas. The mathematical model used for the AUV motion control is elaborated in Chapter 2. In Chapter 3, we consider the AUV navigation and control problem in constrained workspace. A unified receding horizon optimization framework consisting of the dynamic path planning and the nonlinear model predictive control (NMPC) tracking control is developed. Although the NMPC tracking controller well accommodates the practical constraints on the AUV system, it presents a brand new design philosophy compared with the existing control systems that are implemented on real AUVs. Since the existing AUV control systems are reliable controllers, AUV practitioners tend not to fully replace them but to improve the control performance by adding features. By considering this, in Chapter 4, we develop the Lyapunov-based model predictive control (LMPC) scheme which builds on the existing AUV control system and invoke online optimization to improve the control performance. Chapter 5 focuses on the path following (PF) problem. Unlike the trajectory tracking control which equally emphasizes the spatial and temporal control objectives, the PF control often prioritizes the path convergence over the speed assignment. To incorporate this objective prioritization into the controller design, a novel multi-objective model predictive control (MOMPC) scheme is developed. While the MPC technique provides several salient features (e.g., optimality, constraints handling, objective prioritization, robustness, etc.), those features come at a price: a computational bottleneck is formed by the heavy burden of solving online optimizations in real time. To explicitly address this issue, in Chapter 6, the computational complexity of the MPC algorithms is particularly emphasized. Two novel strategies which potentially alleviate the computational burden of the MPC-based AUV tracking control are proposed. In Chapter 7, some conclusive remarks are provided and a few avenues for future research are identified.

Book Autonomous Underwater Vehicles

Download or read book Autonomous Underwater Vehicles written by Cynthia Mitchell and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gravity-gradient and magnetic-gradient inversion equations are combined to estimate the orientation and distance of an underwater object. The CKF algorithm based on EMMAF algorithm and Spherical-Radial is proposed and is applied to the fault diagnosis of slaver AUV in multi AUV collaborative positioning system. Simulation results are used to analyze the advantages and disadvantages of the three algorithms. This book looks at how a Service-Oriented Agent Architecture (SOAA) for marine robots is endowed with resilient capabilities in order to build a robust (fault-tolerant) vehicle control approach. Particular attention is paid to cognitive RCAs based on agent technologies and any other smart solution already applied or potentially applicable to UMVs. The book also presents current and future trends of RCAs for UMVs.

Book Underwater Vehicles

Download or read book Underwater Vehicles written by George M. Roman and published by Nova Science Publishers. This book was released on 2020 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Underwater Vehicles: Design and Applications first explores the application of the adaptive Kalman filter algorithm to the estimation of high speed autonomous underwater vehicle dynamics. The authors investigate the performances of different control schemes, from non-model-based to model-based and adaptive model-based, implemented on a low-inertia underwater vehicle for three-dimensional helical trajectory tracking. Control laws for collision avoidance in three-dimensional environments are introduced, considering scenarios where a vehicle detects arbitrarily shaped and nonconvex obstacles using sensors"--

Book Path Planning Methods for AUVs

Download or read book Path Planning Methods for AUVs written by Konuralp Yiğit and published by . This book was released on 2011 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: From naval operations to ocean science missions, the importance of autonomous vehicles is increasing with the advances in underwater robotics technology. Due to the dynamic and intermittent underwater environment and the physical limitations of autonomous underwater vehicles, feasible and optimal path planning is crucial for autonomous underwater operations. The objective of this thesis is to develop and demonstrate an efficient underwater path planning algorithm based on the level set method. Specifically, the goal is to compute the paths of autonomous vehicles which minimize travel time in the presence of ocean currents. The approach is to either utilize or avoid any type of ocean flows, while allowing for currents that are much larger than the nominal vehicle speed and for three-dimensional currents which vary with time. Existing path planning methods for the fields of ocean science and robotics are first reviewed, and the advantages and disadvantages of each are discussed. The underpinnings of the level set and fast marching methods are then reviewed, including their new extension and application to underwater path planning. Finally, a new feasible and optimal time-dependent underwater path planning algorithm is derived and presented. In order to demonstrate the capabilities of the algorithm, a set of idealized test-cases of increasing complexity are first presented and discussed. A real three-dimensional path planning example, involving strong current conditions, is also illustrated. This example utilizes four-dimensional ocean flows from a realistic ocean prediction system which simulate the ocean response to the passage of a tropical storm in the Middle Atlantic Bight region.