EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Understanding Organic Thin Film Properties for Microelectronic Organic Field effect Transistors and Solar Cells

Download or read book Understanding Organic Thin Film Properties for Microelectronic Organic Field effect Transistors and Solar Cells written by Luke Bennett Roberson and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this work is to understand how the thin film characteristics of p-type organic and polymer semiconductors affect their electronic properties in microelectronic applications. To achieve this goal, three main objectives were drawn out: (1) to create single-crystal organic field-effect transistors and measure the intrinsic charge carrier mobility, (2) to develop a platform for measuring and depositing polymer thin films for organic field-effect transistors, and (3) to deposit polythiophene thin films for inorganic-organic hybrid solar cells and determine how thin film properties effect device performance. Pentacene single-crystal field-effect transistors (OFETs) were successfully manufactured on crystals grown via horizontal vapor-phase reactors designed for simultaneous ultrapurification and crystal growth. These OFETs led to calculated pentacene field-effect mobility of 2.2 cm2/Vs. During the sublimation of pentacene at atmospheric pressure, a pentacene disporportionation reaction was observed whereby pentacene reacted with itself to form a peripentacene, a 2:1 cocrystal of pentacene:6,13-dihydropentacene and 6,13-dihydropentacene. This has led to the proposal of a possible mechanism for the observed disproportionation reaction similar to other polyaromatic hydrocarbons, which may be a precursor for explaining the formation of graphite. Several silicon-based and PET-based field-effect transistor platforms were developed for the measurement of mobility of materials in the thin film state. These platforms were critically examined against one another and the single-crystal devices in order to determine the optimal device design for highest possible mobility data, both theoretically based on silicon technology and commercially based on individual devices on flexible substrates. Novel FET device designs were constructed with a single gate per device on silicon and PET as well as the commonly used common-gate device. It was found that the deplanarization effects and poor gate insulator quality of the individual gate devices led to lower overall performance when compared to the common gate approach; however, good transistor behavior was observed with field modulation. Additionally, these thin films were implemented into inorganic-organic hybrid and purely organic solid-state photovoltaic cells. A correlation was drawn between the thin film properties of the device materials and the overall performance of the device. It was determined that each subsequent layer deposited on the device led to a planarization effect, and that the more pristine the individual layer, the better device performance. The hybrid cells performed at VOC = 0.8V and JSC = 55A/cm2.

Book Interface Controlled Organic Thin Films

Download or read book Interface Controlled Organic Thin Films written by Horst-Günter Rubahn and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic semiconductors are a central topic of advanced materials research. The book is aiming at bridging the gap between the development and production of devices and basic research on thin film characterisation using cutting-edge techniques in surface and interface science. Topics involve organic molecular-based sensors; interfaces in organic diodes and transistors; mobility in organic field effect transistors and space charge problems; integration of optoelectronic nanostructures; nonlinear optical properties of organic nanostructures; the wetting layer problem; how to get from functionalized molecules to nanoaggregates; optical, electrical and mechanical properties of organic nanofibers as well; as near field investigations of organic thin films.

Book Design  Synthesis  and Structure Property Relationship Study of Polymer Field Effect Transistors

Download or read book Design Synthesis and Structure Property Relationship Study of Polymer Field Effect Transistors written by Ting Lei and published by Springer. This book was released on 2015-01-05 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book summarizes Ting Lei’s PhD study on a series of novel conjugated polymers for field-effect transistors (FETs). Studies contain many aspects of polymer FETs, including backbone design, side-chain engineering, property study, conformation effects and device fabrication. The research results have previously scattered in many important journals and conferences worldwide. The book is likely to be of interest to university researchers, engineers and graduate students in materials sciences and chemistry who wish to learn some principles, strategy, and applications of polymer FETs.

Book Study of Structure property performance Relationships for Organic Thin film Transistors and Polymeric Solar Cells

Download or read book Study of Structure property performance Relationships for Organic Thin film Transistors and Polymeric Solar Cells written by Sheng Bi and published by . This book was released on 2016 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic electronics has great potential for fabricating low cost, flexible and large-area devices. Despite the rapid development, several main challenges of the field need to be addressed in both organic conjugated polymer and small molecules based devices, including organic thin-film transistors (OTFTs) and polymer solar cells (PSCs). This dissertation first explores two approaches to align small molecule crystals and improve surface coverage. The controlled evaporative self-assembly (CESA) method is combined with binary solvent system using small molecule SMDPPEH to control the crystal growth. By optimizing the two solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. Also, polymer additives can be added into small molecule to control crystal alignment. As a result, mobilities are at least 10 times higher than that from spin-coated film. The SMDPPEH based OTFTs exhibit a mobility of 1.6×10-2 cm2/Vs, which is the highest mobility from SMDPPEH ever reported. The donor-acceptor vertical composition profile on the performance of the P3HT/PCBM based organic bulk heterojunction solar cells was studied. In this simulation study, variety of donor-acceptor vertical configurations was investigated for both regular and inverted PSC structures. The physical mechanisms behind the diversification of open circuit voltage, short circuit current, and fill factor, and thus power conversion efficiency from various vertical configurations are explained. The effect of vertical composition profile from the study could serve as guidance for experimental optimization of organic bulk heterojunction solar cells. Also, morphology variation of ZnO electron transport layer from atomic layer deposition and sol-gel methods on the performance of organic inverted solar cells were investigated. AFM and SEM were utilized to characterize the morphology of ZnO thin films and nanorods so as to explain the efficiency difference. The final part of the work demonstrates one-step multi-layer pattern transfer to make organic solar cells on rigid and flexible substrates. A multi-layer inking and stamping, a cost-efficient, purely additive pattern transfer technique, was developed to fabricate PSCs. GLYMO is added into PEDOT:PSS hole transport layer and its effect on PSC performance and pattern transfer yield was investigated to reach overall PSC efficiency and high yield pattern transfer.

Book Organic and Printed Electronics

Download or read book Organic and Printed Electronics written by Giovanni Nisato and published by CRC Press. This book was released on 2024-05-24 with total page 777 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of organic and printed electronics (OPE) is well established in terms of academic, scientific, and technological research. The mass applications, ranging from displays to printed sensors to photovoltaics, are growing and becoming all the more relevant today. This book provides a comprehensive introduction to organic flexible and printed electronics, their fundamental aspects, core technologies, and applications and is authored by international expert practitioners in the field. The book is a key reference resource specially designed to address students in their final undergraduate or beginning graduate studies as well as engineers interested in approaching this field from an application perspective. In this second edition of the book, almost all chapters have been revised and updated. Among others, the second edition includes new chapters on smart textiles and on photovoltaics. The chapter on characterization techniques has been expanded and includes new references to standards. The contents on circular economy, innovation management, and roadmapping chapters have been largely augmented and updated. Finally, the chapter on hands-on experiments includes new set-ups on dye solar cells and supercapacitors.

Book Organic Flexible Electronics

Download or read book Organic Flexible Electronics written by Piero Cosseddu and published by Woodhead Publishing. This book was released on 2020-09-29 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic Electronics is a novel field of electronics that has gained an incredible attention over the past few decades. New materials, device architectures and applications have been continuously introduced by the academic and also industrial communities, and novel topics have raised strong interest in such communities, as molecular doping, thermoelectrics, bioelectronics and many others.Organic Flexible Electronics is mainly divided into three sections. The first part is focused on the fundamentals of organic electronics, such as charge transport models in these systems and new approaches for the design and synthesis of novel molecules. The first section addresses the main challenges that are still open in this field, including the important role of interfaces for achieving high-performing devices or the novel approaches employed for improving reliability issues.The second part discusses the most innovative devices which have been developed in recent years, such as devices for energy harvesting, flexible batteries, high frequency circuits, and flexible devices for tattoo electronics and bioelectronics.Finally the book reviews the most important applications moving from more standard flexible back panels to wearable and textile electronics and more futuristic applications like ingestible systems. - Reviews the fundamental properties and methods for optimizing organic electronic materials including chemical doping and techniques to address stability issues - Discusses the most promising organic electronic devices for energy, electronics, and biomedical applications - Addresses key applications of organic electronic devices in imagers, wearable electronics, bioelectronics

Book Nanoscale Investigation and Control of the Interfacial Properties of Organic Solar Cells and Organic Thin Film Transistors

Download or read book Nanoscale Investigation and Control of the Interfacial Properties of Organic Solar Cells and Organic Thin Film Transistors written by Mahdieh Aghamohammadi and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Large Area and Flexible Electronics

Download or read book Large Area and Flexible Electronics written by Mario Caironi and published by John Wiley & Sons. This book was released on 2015-01-13 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.

Book Organic Thin Film Transistors and Solar Cells Fabricated with  Pi  Conjugated Polymers and Macrocyclic Materials

Download or read book Organic Thin Film Transistors and Solar Cells Fabricated with Pi Conjugated Polymers and Macrocyclic Materials written by Zongxiang Xu and published by Open Dissertation Press. This book was released on 2017-01-27 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Organic Thin Film Transistors and Solar Cells Fabricated With [pi]-conjugated Polymers and Macrocyclic Materials" by Zongxiang, Xu, 许宗祥, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. DOI: 10.5353/th_b4218255 Subjects: Macrocyclic compounds Conjugated polymers Thin film transistors Solar cells

Book Thin Film Physics And Devices  Fundamental Mechanism  Materials And Applications For Thin Films

Download or read book Thin Film Physics And Devices Fundamental Mechanism Materials And Applications For Thin Films written by Jianguo Zhu and published by World Scientific. This book was released on 2021-06-18 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thin films have an extremely broad range of applications from electronics and optics to new materials and devices. Collaborative and multidisciplinary efforts from physicists, materials scientists, engineers and others have established and advanced a field with key pillars constituting (i) the synthesis and processing of thin films, (ii) the understanding of physical properties in relation to the nanometer scale, (iii) the design and fabrication of nano-devices or devices with thin film materials as building blocks, and (iv) the design and construction of novel tools for characterization of thin films.Against the backdrop of the increasingly interdisciplinary field, this book sets off to inform the basics of thin film physics and thin film devices. Readers are systematically introduced to the synthesis, processing and application of thin films; they will also study the formation of thin films, their structure and defects, and their various properties — mechanical, electrical, semiconducting, magnetic, and superconducting. With a primary focus on inorganic thin film materials, the book also ventures on organic materials such as self-assembled monolayers and Langmuir-Blodgett films.This book will be effective as a teaching or reference material in the various disciplines, ranging from Materials Science and Engineering, Electronic Science and Engineering, Electronic Materials and Components, Semiconductor Physics and Devices, to Applied Physics and more. The original Chinese publication has been instrumental in this purpose across many Chinese universities and colleges.

Book Organic Thin Films and Surfaces  Directions for The Nineties

Download or read book Organic Thin Films and Surfaces Directions for The Nineties written by Abraham Ulman and published by Elsevier. This book was released on 2013-10-22 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Therefore, in order to reflect the modern technology-oriented problems, the title has been slightly modified from Physics of Thin Films to Thin Films.Edited by Abraham Ulman, Organic Thin Films and Surfaces: Directions for the Nineties will be the first volume to link two dynamic areas in the physical sciences--organic thin films and surface science. Contributions from leading experts in the field cover a range of important topics on the processing, characterization, and applications of organic thin films.

Book In Situ Real time Studies of Organic Semiconductor Thin Film Growth

Download or read book In Situ Real time Studies of Organic Semiconductor Thin Film Growth written by Tushar Vrushank Desai and published by . This book was released on 2012 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis discusses the thin film deposition of small molecule organic semiconductors. Small molecule organics are attracting significant interest primarily due to their ability to form well ordered thin films at low temperatures with reasonable electronic properties. Potential applications of organic based electronics include thin film transistors, display technologies, flexible integrated circuits and photovoltaics. The growth and morphology of these organic thin films is very sensitive to the nature (chemical and physical) of the underlying substrate. A significant challenge in fabricating organic thin film devices with superior electrical characteristics is that of controlling and more importantly understanding the properties at the interface between the organic semiconducting layer and the underlying substrate. In this thesis, the use of supersonic molecular beams as a means to deposit organic semiconductor thin films is discussed in conjunction with in situ real-time synchrotron scattering and ex situ atomic force microscopy as thin film characterization techniques. This thesis discusses the effects of the incident kinetic energy of the small molecule organic and the nature of dielectric (clean silicon dioxide, SiO2; or SiO2 modified with self-assembled monolayers, SAMs, of varying thickness and chemical functionality; or SiO2 modified with polymers of varying surface energy) on the fundamental thin film processes occurring at the organic semiconductor/substrate interface. These thin film processes include adsorption, nucleation and diffusion, and the filling up of individual monolayers during thin film growth. Experiments have provided significant insight into these fundamental thin film processes. The results indicate that the probability of adsorption is a strong function of the incident kinetic energy of the organic molecule and thickness of the underlying SAM. The submonolayer island shape and island density is also a strong function of the underlying substrate with the later implying a change in the diffusivity of the organic with the identity of the substrate. Finally, the results suggest that multilayer thin film morphology such as feature/grain size and the thin film roughness is also a function of the underlying substrate.

Book Morphology property Relationship for Binary Organic Thin Films

Download or read book Morphology property Relationship for Binary Organic Thin Films written by Alyssa Lynn Griffin and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic thin films can be readily mass-produced through solution-based fabrication methods including ink-printing and solution-casting because their light weight, flexibility, and inexpensive sources. Their applications range from organic field-effect transistors (OFET), organic solar cells (OSC), to organic light emitting diodes (OLEDs). Compared with pure component films, binary organic thin films (BOTF) allows for novel characteristics and specialized features to handle more demanding tasks. Due to the complex intermolecular interactions in BOTF, various microscopic phases with different morphological and electronic properties may be formed and this information is difficult to extract through conventional bulk measurements. Organic thin films can be readily mass-produced through solution-based fabrication methods , including ink-printing and solution-casting because their light weight, flexibility, and inexpensive sources. Their applications range from organic field-effect transistors (OFET), organic solar cells (OSC), to organic light emitting diodes (OLEDs). Compared with pure component films, binary organic thin films (BOTF) allow for novel characteristics and specialized features to handle more demanding tasks. Due to the complex intermolecular interactions in BOTF, various microscopic phases with different morphological and electronic properties may be formed , and this information is difficult to extract through conventional bulk measurements. This study focused on investigating the binary mixture of DH6T and PCBM thin films on HOPG through Atomic Force Microscopy (AFM) and Kelvin Probe Force Microscope (KPFM). Films of pure DH6T and pure PCBM and their mixture films were systematically analyzed to reveal topography and surface potential of different phases. This study found a vertical packing system of pure DH6T on HOPG surface in island forms. PCBM had a full coverage on the substrate with occasional pits which had been seen in previous studies. When adding different concentrations of PCBM to DH6T, the islands had changes in height as well as the presence of new morphology features that possibly consist of mostly PCBM. With this study, further analysis via annealings as well as energy minimization simulations may deepen our understanding about molecular interactions of the DH6T/PCBM mixture at a microscopic scale.

Book Organic Thin Film Transistors and Solar Cells Fabricated with  pi  conjugated Polymers and Macrocyclic Materials

Download or read book Organic Thin Film Transistors and Solar Cells Fabricated with pi conjugated Polymers and Macrocyclic Materials written by Zongxiang Xu and published by . This book was released on 2009 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Organic Materials for Electronic and Photonic Devices

Download or read book Handbook of Organic Materials for Electronic and Photonic Devices written by Oksana Ostroverkhova and published by Woodhead Publishing. This book was released on 2018-11-30 with total page 914 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design. - Provides a comprehensive overview of the materials, mechanisms, characterization techniques, and structure property relationships of organic electronic and photonic materials - Reviews key applications, including organic solar cells, light-emitting diodes electrochemical cells, sensors, transistors, bioelectronics, and memory devices - New content to reflect latest advances in our understanding of underlying physics to enable material design and device fabrication

Book Recent Advances in Thin Films

Download or read book Recent Advances in Thin Films written by Sushil Kumar and published by Springer Nature. This book was released on 2020-08-27 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises the expert contributions from the invited speakers at the 17th International Conference on Thin Films (ICTF 2017), held at CSIR-NPL, New Delhi, India. Thin film research has become increasingly important over the last few decades owing to the applications in latest technologies and devices. The book focuses on current advances in thin film deposition processes and characterization including thin film measurements. The chapters cover different types of thin films like metal, dielectric, organic and inorganic, and their diverse applications across transistors, resistors, capacitors, memory elements for computers, optical filters and mirrors, sensors, solar cells, LED's, transparent conducting coatings for liquid crystal display, printed circuit board, and automobile headlamp covers. This book can be a useful reference for students, researchers as well as industry professionals by providing an up-to-date knowledge on thin films and coatings.

Book Effects of Energetic Disorder on the Optoelectronic Properties of Organic Solar Cells

Download or read book Effects of Energetic Disorder on the Optoelectronic Properties of Organic Solar Cells written by Nikolaos Felekidis and published by Linköping University Electronic Press. This book was released on 2018-09-10 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaics (OPVs) is a promising low-cost and environmental-friendly technology currently achieving 12-14% power conversion efficiency. Despite the extensive focus of the research community over the last years, critical mechanisms defining the performance of OPVs are still topics of debate. While energetic disorder is known to be characteristic of organic semiconductors in general, its potential role in OPV has received surprisingly little attention. In this thesis we investigate some aspects of the relation between energetic disorder and several optoelectronic properties of OPV. Charge carrier mobility is a key parameter in characterizing the performance of organic semiconductors. Analyzing the temperature dependence of the mobility is also an oftenused method to obtain (estimates for) the energetic disorder in the HOMO and LUMO levels of an organic semiconductor material. Different formalisms to extract and analyze mobilities from space charge limited conductivity (SCLC) experiments are reviewed. Surprisingly, the Murgatroyd-Gill analytical model in combination with the Gaussian disorder model in the Boltzmann limit yields similar mobilities and energetic disorders as a more elaborate drift-diffusion model with parametrized mobility functionals. Common analysis and measurement errors are discussed. All the models are incorporated in an automated analysis freeware tool. The open circuit voltage (Voc) has attracted considerable interest as the large difference between Voc and the bandgap is the main loss mechanism in bulk heterojunction OPVs. Surprisingly, in ternary devices composed of two donors and one acceptor, the Voc is not pinned to the shallowest HOMO but demonstrates a continuous tunability between the binary extremities. We show that this phenomenon can be explained with an equilibrium model where Voc is defined as the splitting of the quasi-Fermi levels of the photo-created holes and electrons in a common density of states accounting for the stoichiometry, i.e. the ratio of the donor materials and the broadening by Gaussian disorder. Evaluating the PCE, it is found that ternary devices do not offer advantages over binary unless the fill factor (FF) is increased at intermediate compositions, as a result of improved transport/recombination upon material blending. Stressing the importance of material intermixing to improve the performance, we found that the presence of an acceptor may drastically alter the mobility and energetic disorder of the donor and vice versa. The effect of different acceptors was studied in a ternary onedonor- two-acceptors system, where the unpredictable variability with composition of the energetic disorder in the HOMO and the LUMO explained the almost linear tunability of Voc. Designing binary OPVs based on the design rule that the energetic disorder can be reduced upon material blending, as we observed, can yield a relative PCE improvement of at least 20%. CT states currently play a key role in evaluating the performance of OPVs and CTelectroluminescence (CT-EL) is assumed to stem from the recombination of thermalized electron-hole pairs. The varying width of the CT-EL peak for different material combinations is intuitively expected to reflect the energetic disorder of the effective HOMO and LUMO. We employ kinetic Monte Carlo (kMC) CT-EL simulations, using independently measured disorder parameters as input, to calculate the ground-to-ground state (0-0) transition spectrum. Including the vibronic broadening according to the Franck Condon principle, we reproduce the width and current dependence of the measured CT-EL peak for a large number of donor-acceptor combinations. The fitted dominant phonon modes compare well with the values measured using the spectral line narrowing technique. Importantly, the calculations show that CT-EL originates from a narrow, non-thermalized subset of all available CT states, which can be understood by considering the kinetic microscopic process with which electron-hole pairs meet and recombine. Despite electron-hole pairs being strongly bound in organic materials, the charge separation process following photo-excitation is found to be extremely efficient and independent of the excitation energy. However, at low photon energies where the charges are excited deep in the tail of the DOS, it is intuitively expected for the extraction yield to be quenched. Internal Quantum Efficiency (IQE) experiments for different material systems show both inefficient and efficient charge dissociation for excitation close to the CT energy. This finding is explained by kinetic Monte Carlo simulations accounting for a varying degree of e-h delocalization, where strongly bound localized CT pairs (< 2nm distance) are doomed to recombine at low excitation energies while extended delocalization over 3-5nm yields an increased and energy-independent IQE. Using a single material parameter set, the experimental CT electroluminescence and absorption spectra are reproduced by the same kMC model by accounting for the vibronic progression of the calculated 0-0 transition. In contrast to CT-EL, CT-absorption probes the complete CT manifold. Charge transport in organic solar cells is currently modelled as either an equilibrium or a non-equilibrium process. The former is described by drift-diffusion (DD) equations, which can be calculated quickly but assume local thermal equilibrium of the charge carriers with the lattice. The latter is described by kMC models, that are time-consuming but treat the charge carriers individually and can probe all relevant time and energy scales. A hybrid model that makes use of the multiple trap and release (MTR) concept in combination with the DD equations is shown to describe both steady-state space charge limited conductivity experiments and non-equilibrium time-resolved transport experiments using a single parameter set. For the investigated simulations, the DD-MTR model is in good agreement with kMC and ~10 times faster. Steady-state mobilities from DD equations have been argued to be exclusively relevant for operating OPVs while charge carrier thermalization and non-equilibrium time-dependent mobilities (although acknowledged) can be disregarded. This conclusion, based on transient photocurrent experiments with ?s time resolution, is not complete. We show that non-equilibrium kMC simulations can describe the extraction of charge carriers from subps to 100 ?s timescales with a single parameter set. The majority of the fast charge carriers, mostly non-thermalized electrons, are extracted at time scales below the resolution of the experiment. In other words, the experiment resolves only the slower fraction of the charges, predominantly holes.