EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Understanding Bridge Performance Through Integrated Modeling and Monitoring

Download or read book Understanding Bridge Performance Through Integrated Modeling and Monitoring written by Jian Liu and published by . This book was released on 2007 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first structure to be investigated, the Chesapeake City Bridge, is a 539 foot, tied arch that spans the C&D canal in Maryland. The objectives of the first case study presented were to (1) develop a numerical model, (2) characterize the physical condition of a tied arch bridge, and (3) determine the cause(s) of damage (fatigue cracking in this case) using multiple static diagnostic tests in conjunction with the developed model.

Book Behavior of Integral Abutment Bridges

Download or read book Behavior of Integral Abutment Bridges written by David A. Butler and published by . This book was released on 2005 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bridge Design  Assessment and Monitoring

Download or read book Bridge Design Assessment and Monitoring written by Airong Chen and published by Routledge. This book was released on 2018-12-07 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridges play important role in modern infrastructural system. This book provides an up-to-date overview of the field of bridge engineering, as well as the recent significant contributions to the process of making rational decisions in bridge design, assessment and monitoring and resources optimization deployment for the purpose of enhancing the welfare of society. Tang specifies the purposes and requirements of the conceptual bridge design, considering bridge types, basic elements, structural systems and load conditions. Cremona and Poulin propose an assessment procedure for existing bridges. Kallias et al. develop a framework for the performance assessment of metallic bridges under atmospheric exposure by integrating coating deterioration and corrosion modelling. Soriano et al. employ a simplified approach to estimate the maximum traffic load effect on a highway bridge and compare the results with other approaches based on on-site weigh-in-motion data. Akiyama et al. propose a method for reliability-based durability design and service life assessment of reinforced concrete deck slab of jetty structures. Chen et al. propose a meso-scale model to simulate the uniform and pitting corrosion of rebar in concrete and to obtain the crack patterns of the concrete with different rebar arrangements. Ruan et al. present a traffic load model for long span multi-pylon cable- stayed bridges. Khuc and Catbas implement a non-target vision- based method for the measurement of both static and dynamic displacements time histories. Finally, Cruz presents the career of the outstanding bridge engineer Edgar Cardoso in the fields of bridge design and experimental analysis. The book serves as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers, engineers, consultants and contractors from all areas sections of bridge engineering. The chapters originally published as a special issue in Structure and Infrastructure Engineering.

Book Maintenance  Monitoring  Safety  Risk and Resilience of Bridges and Bridge Networks

Download or read book Maintenance Monitoring Safety Risk and Resilience of Bridges and Bridge Networks written by Tulio Nogueira Bittencourt and published by CRC Press. This book was released on 2016-11-17 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks contains the lectures and papers presented at the Eighth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2016), held in Foz do Iguaçu, Paraná, Brazil, 26-30 June, 2016. This volume consists of a book of extended abstracts and a DVD containing the full papers of 369 contributions presented at IABMAS 2016, including the T.Y. Lin Lecture, eight Keynote Lectures, and 360 technical papers from 38 countries. The contributions deal with the state-of-the-art as well as emerging concepts and innovative applications related to all main aspects of bridge maintenance, safety, management, resilience and sustainability. Major topics covered include: advanced materials, ageing of bridges, assessment and evaluation, bridge codes, bridge diagnostics, bridge management systems, composites, damage identification, design for durability, deterioration modeling, earthquake and accidental loadings, emerging technologies, fatigue, field testing, financial planning, health monitoring, high performance materials, inspection, life-cycle performance and cost, load models, maintenance strategies, non-destructive testing, optimization strategies, prediction of future traffic demands, rehabilitation, reliability and risk management, repair, replacement, residual service life, resilience, robustness, safety and serviceability, service life prediction, strengthening, structural integrity, and sustainability. This volume provides both an up-to-date overview of the field of bridge engineering as well as significant contributions to the process of making more rational decisions concerning bridge maintenance, safety, serviceability, resilience, sustainability, monitoring, risk-based management, and life-cycle performance using traditional and emerging technologies for the purpose of enhancing the welfare of society. It will serve as a valuable reference to all involved with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 980 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bridge Optimization

Download or read book Bridge Optimization written by Yun Lai Zhou and published by BoD – Books on Demand. This book was released on 2020-02-05 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of several applications for condition monitoring and damage identification in bridge structures. Bridge structural condition monitoring is essential since it can provide early warning of potential defects in bridges, which may induce catastrophic accidents and result in huge economic loss. Such bridge condition monitoring relies on sensing techniques, especially advanced sensing techniques that can provide detailed information on bridge structures. Additionally, postprocessing systems can interpret the captured data and warn of any potential faults. This book will give students a thorough understanding of bridge condition monitoring.

Book Accurate and Scalable Bridge Health Monitoring Using Drive by Vehicle Vibrations

Download or read book Accurate and Scalable Bridge Health Monitoring Using Drive by Vehicle Vibrations written by Jingxiao Liu and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of this research is to achieve accurate and scalable bridge health monitoring (BHM) by learning, integrating, and generalizing the monitoring models derived from drive-by vehicle vibrations. Early diagnosis of bridge damage through BHM is crucial for preventing more severe damage and collapses that could lead to significant economic and human losses. Conventional BHM approaches require installing sensors directly on bridges, which are expensive, inefficient, and difficult to scale up. To address these limitations, this research uses vehicle vibration data when the vehicle passes over the bridge to infer bridge conditions. This drive-by BHM approach builds on the intuition that the recorded vehicle vibrations carry information about the vehicle-bridge interaction (VBI) and thus can indirectly inform us of the dynamic characteristics of the bridge. Advantages of this approach include the ability for each vehicle to monitor multiple bridges economically and eliminating the need for on-site maintenance of sensors and equipment on bridges. Though the drive-by BHM approach has the above benefits, implementing it in practice presents challenges due to its indirect measurement nature. In particular, this research tackles three key challenges: 1) Complex vehicle-bridge interaction. The VBI system is a complex interaction system, making mathematical modeling difficult. The analysis of vehicle vibration data to extract the desired bridge information is challenging because the data have complex noise conditions as well as many uncertainties involved. 2) Limited temporal information. The drive-by vehicle vibration data contains limited temporal information at each coordinate on the bridge, which consequently restricts the drive-by BHM's capacity to deliver fine-grained spatiotemporal assessments of the bridge's condition. 3) Heterogeneous bridge properties. The damage diagnostic model learned from vehicle vibration data collected from one bridge is hard to generalize to other bridges because bridge properties are heterogeneous. Moreover, the multi-task nature of damage diagnosis, such as detection, localization, and quantification, exacerbates the system heterogeneity issue. To address the complex vehicle-bridge interaction challenge, this research learns the BHM model through non-linear dimensionality reduction based on the insights we gained by formulating the VBI system. Many existing physics-based formulations make assumptions (e.g., ignoring non-linear dynamic terms) to simplify the drive-by BHM problem, which is inaccurate for damage diagnosis in practice. Data-driven approaches are recently introduced, but they use black-box models, which lack physical interpretation and require lots of labeled data for model training. To this end, I first characterize the non-linear relationship between bridge damage and vehicle vibrations through a new VBI formulation. This new formulation provides us with key insights to model the vehicle vibration features in a non-linear way and consider the high-frequency interactions between the bridge and vehicle dynamics. Moreover, analyzing the high-dimensional vehicle vibration response is difficult and computationally expensive because of the curse of dimensionality. Hence, I develop an algorithm to learn the low-dimensional feature embedding, also referred to as manifold, of vehicle vibration data through a non-linear and non-convex dimensionality reduction technique called stacked autoencoders. This approach provides informative features for achieving damage estimation with limited labeled data. To address the limited temporal information challenge, this research integrates multiple sensing modalities to provide complementary information about bridge health. The approach utilizes vibrations collected from both drive-by vehicles and pre-existing telecommunication (telecom) fiber-optic cables running through the bridge. In particular, my approach uses telecom fiber-optic cables as distributed acoustic sensors to continuously collect bridge dynamic strain responses at fixed locations. In addition, drive-by vehicle vibrations capture the input loading information to the bridge with a high spatial resolution. Due to extensively installed telecom fiber cables on bridges, the telecom cable-based approach also does not require on-site sensor installation and maintenance. A physics-informed system identification method is developed to estimate the bridge's natural frequencies, strain and displacement mode shapes using telecom cable responses. This method models strain mode shapes based on parametric mode shape functions derived from theoretical bridge dynamics. Moreover, I am developing a sensor fusion approach that reconstructs the dynamic responses of the bridge by modeling the vehicle-bridge-fiber interaction system that considers the drive-by vehicle and telecommunication fiber vibrations as the system input and output, respectively. To address the heterogeneous bridge properties challenge, this research generalizes the monitoring model for one bridge to monitor other bridges through a hierarchical model transfer approach. This approach learns a new manifold (or feature space) of vehicle vibration data collected from multiple bridges so that the features transferred to such manifold are sensitive to damage and invariant across multiple bridges. Specifically, the feature is modeled through domain adversarial learning that simultaneously maximizes the damage diagnosis performance for the bridge with available labeled data while minimizing the performance of classifying which bridge (including those with and without labeled data) the data came from. Moreover, to learn multiple diagnostic tasks (including damage detection, localization, and quantification) that have distinct learning difficulties, the framework formulates a feature hierarchy that allocates more learning resources to learn tasks that are hard to learn, in order to improve learning performance with limited data. A new generalization risk bound is derived to provide the theoretical foundation and insights for developing the learning algorithm and efficient optimization strategy. This approach allows a multi-task damage diagnosis model developed using labeled data from one bridge to be used for other bridges without requiring training data labels from those bridges. Overall, this research offers a new approach that can achieve accurate and scalable BHM by learning, integrating, and generalizing monitoring models learned from drive-by vehicle vibrations. The approach enables low-cost and efficient diagnosis of bridge damage before it poses a threat to the public, which could avoid the enormous loss of human lives and property.

Book Structural Health Monitoring 2003

Download or read book Structural Health Monitoring 2003 written by Fu-Kuo Chang and published by DEStech Publications, Inc. This book was released on 2003 with total page 1592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Important new information on sensors, monitoring, prognosis, networking, and planning for safety and maintenance.

Book Health Monitoring of Bridges

Download or read book Health Monitoring of Bridges written by Helmut Wenzel and published by John Wiley & Sons. This book was released on 2008-11-20 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Health Monitoring of Bridges prepares the bridge engineering community for the exciting new technological developments happening in the industry, offering the benefit of much research carried out in the aerospace and other industrial sectors and discussing the latest methodologies available for the management of bridge stock. Health Monitoring of Bridges: Includes chapters on the hardware used in health monitoring, methodologies, applications of these methodologies (materials, methods, systems and functions), decision support systems, damage detection systems and the rating of bridges and methods of risk assessment. Covers both passive and active monitoring approaches. Offers directly applicable methods and as well as prolific examples, applications and references. Is authored by a world leader in the development of health monitoring systems. Includes free software that can be downloaded from http://www.samco.org/ and provides the raw data of benchmark projects and the key results achieved. This book provides a comprehensive guide to all aspects of the structural health monitoring of bridges for engineers involved in all stages from concept design to maintenance. It will also appeal to researchers and academics within the civil engineering and structural health monitoring communities.

Book Long Term Behavior of Integral Abutment Bridges

Download or read book Long Term Behavior of Integral Abutment Bridges written by Robert J. Frosch and published by Joint Transportation Research Program. This book was released on 2011-08-15 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integral abutment (IA) construction has become the preferred method over conventional construction for use with typical highway bridges. However, the use of these structures is limited due to state mandated length and skew limitations. To expand their applicability, studies were implemented to define limitations supported by rational analysis rather than simply engineering judgment. Previous research investigations have resulted in larger length limits and an overall better understanding of these structures. However, questions still remain regarding IA behavior; specifically questions regarding long-term behavior and effects of skew. To better define the behavior of these structures, a study was implemented to specifically investigate the long term behavior of IA bridges. First, a field monitoring program was implemented to observe and understand the in-service behavior of three integral abutment bridges. The results of the field investigation were used to develop and calibrate analytical models that adequately capture the long-term behavior. Second, a single-span, quarter-scale integral abutment bridge was constructed and tested to provide insight on the behavior of highly skewed structures. From the acquired knowledge from both the field and laboratory investigations, a parametric analysis was conducted to characterize the effects of a broad range of parameters on the behavior of integral abutment bridges. This study develops an improved understanding of the overall behavior of IA bridges. Based on the results of this study, modified length and skew limitations for integral abutment bridge are proposed. In addition, modeling recommendations and guidelines have been developed to aid designers and facilitate the increased use of integral abutment bridges.

Book A New Approach for Performance Evaluation of Bridge Infrastructure Using Terrestrial LiDAR and Advanced Mathematical Modeling

Download or read book A New Approach for Performance Evaluation of Bridge Infrastructure Using Terrestrial LiDAR and Advanced Mathematical Modeling written by Ali Shafikhani and published by . This book was released on 2020 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: High plastic expansive clays when subjected to different climatic conditions undergo large ground movements causing distress to infrastructures including bridges, pavements,buildings, retaining structures, and others. Performance assessment of these structures built on problematic soils such as expansive clays is important to reduce maintenance and extending the design life of infrastructure. Rapid developments in remote sensing technologies with precise evaluation have influenced the monitoring techniques for assessing the health condition of civil infrastructure projects. While these technologies have considerably aided in performance evaluation, cogent procedures for evaluating the ground movements are still required that integrates technologies, climatic factors, soil behavior models. This research study presents an integrated approach using the Three-Dimensional Terrestrial Laser Scanning (3D-TLS)technique and advanced mathematical modeling (system identification approach) for assessing the performance of the bridge infrastructure including highway embankment, bridge deck,bridge approach slab, bridge abutments, and columns. First, an optimized framework is developed to evaluate ground movements using 3D-TLS technique, which is an active-remote sensing Light Detection and Ranging (LiDAR) remote sensing technology that uses near infrared light to monitor physical characteristics of earth's surface. The ground movements from the processed scans, and climatic factor parameters including temperature and precipitation variations were used to develop advanced mathematical models of dynamic systems using collected time-series data. The validation of the developed integrated framework is illustrated on a test site built on high plastic expansive clay soils located in North Texas. Cost-Benefit Analysis (COA) is performed to compare 3D-TLS remote sensing and prevalent monitoring approaches. This research highlights the integration of latest technological developments with advanced mathematical models to predict the condition of a bridge infrastructure.

Book Bridge Maintenance  Safety  Management  Life Cycle Sustainability and Innovations

Download or read book Bridge Maintenance Safety Management Life Cycle Sustainability and Innovations written by Hiroshi Yokota and published by CRC Press. This book was released on 2021-04-20 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations contains lectures and papers presented at the Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020), held in Sapporo, Hokkaido, Japan, April 11–15, 2021. This volume consists of a book of extended abstracts and a USB card containing the full papers of 571 contributions presented at IABMAS 2020, including the T.Y. Lin Lecture, 9 Keynote Lectures, and 561 technical papers from 40 countries. The contributions presented at IABMAS 2020 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of maintenance, safety, management, life-cycle sustainability and technological innovations of bridges. Major topics include: advanced bridge design, construction and maintenance approaches, safety, reliability and risk evaluation, life-cycle management, life-cycle sustainability, standardization, analytical models, bridge management systems, service life prediction, maintenance and management strategies, structural health monitoring, non-destructive testing and field testing, safety, resilience, robustness and redundancy, durability enhancement, repair and rehabilitation, fatigue and corrosion, extreme loads, and application of information and computer technology and artificial intelligence for bridges, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of making more rational decisions on maintenance, safety, management, life-cycle sustainability and technological innovations of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including engineers, researchers, academics and students from all areas of bridge engineering.

Book Structural Health Monitoring of Long Span Suspension Bridges

Download or read book Structural Health Monitoring of Long Span Suspension Bridges written by You Lin Xu and published by CRC Press. This book was released on 2011-08-31 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Long span suspension bridges cost billions. In recent decades, structural health monitoring systems have been developed to measure the loading environment and responses of these bridges in order to assess serviceability and safety while tracking the symptoms of operational incidents and potential damage. This helps ensure the bridge functions properly during a long service life and guards against catastrophic failure under extreme events. Although these systems have achieved some success, this cutting-edge technology involves many complex topics that present challenges to students, researchers, and engineers alike. Systematically introducing the fundamentals and outlining the advanced technologies for achieving effective long-term monitoring, Structural Health Monitoring of Long-Span Suspension Bridges covers: The design of structural health monitoring systems Finite element modelling and system identification Highway loading monitoring and effects Railway loading monitoring and effects Temperature monitoring and thermal behaviour Wind monitoring and effects Seismic monitoring and effects SHMS-based rating method for long span bridge inspection and maintenance Structural damage detection and test-bed establishment These are applied in a rigorous case study, using more than ten years' worth of data, to the Tsing Ma suspension bridge in Hong Kong to examine their effectiveness in the operational performance of a real bridge. The Tsing Ma bridge is the world's longest suspension bridge to carry both a highway and railway, and is located in one of the world’s most active typhoon regions. Bridging the gap between theory and practice, this is an ideal reference book for students, researchers, and engineering practitioners.

Book The Utah Pilot Bridge  Live Load and Dynamic Testing  Modeling and Monitoring for the Long term Bridge Performance Program

Download or read book The Utah Pilot Bridge Live Load and Dynamic Testing Modeling and Monitoring for the Long term Bridge Performance Program written by Steven M. Petroff and published by . This book was released on 2010 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the Federal Highway Administration's Long-Term Bridge Performance Program, Live Load and Dynamic tests were conducted. A long-term monitoring plan was developed and presented for the Utah Pilot Bridge based on Live Load and Dynamic tests. As one of seven pilot bridges, the Utah Pilot Bridge is one of the first bridges used to initiate the LTBP Program. A formal permit approval process, with the Utah Department of Transportation, was followed to gain permission to conduct the tests and install long-term instrumentation. Analysis provided good results for each test completed, with a summary of test results presented. A Finite Element Model was created and refined based off test data. Instrumentation was installed and checked to ensure quality data was streaming to the collection site.

Book Maintenance  Safety  Risk  Management and Life Cycle Performance of Bridges

Download or read book Maintenance Safety Risk Management and Life Cycle Performance of Bridges written by Nigel Powers and published by CRC Press. This book was released on 2018-07-04 with total page 5447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges contains lectures and papers presented at the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018), held in Melbourne, Australia, 9-13 July 2018. This volume consists of a book of extended abstracts and a USB card containing the full papers of 393 contributions presented at IABMAS 2018, including the T.Y. Lin Lecture, 10 Keynote Lectures, and 382 technical papers from 40 countries. The contributions presented at IABMAS 2018 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of bridge maintenance, safety, risk, management and life-cycle performance. Major topics include: new design methods, bridge codes, heavy vehicle and load models, bridge management systems, prediction of future traffic models, service life prediction, residual service life, sustainability and life-cycle assessments, maintenance strategies, bridge diagnostics, health monitoring, non-destructive testing, field testing, safety and serviceability, assessment and evaluation, damage identification, deterioration modelling, repair and retrofitting strategies, bridge reliability, fatigue and corrosion, extreme loads, advanced experimental simulations, and advanced computer simulations, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of more rational decision-making on bridge maintenance, safety, risk, management and life-cycle performance of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.

Book Structural Health Monitoring for Suspension Bridges

Download or read book Structural Health Monitoring for Suspension Bridges written by Yang Deng and published by Springer. This book was released on 2018-12-19 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents extensive information on structural health monitoring for suspension bridges. During the past two decades, there have been significant advances in the sensing technologies employed in long-span bridge health monitoring. However, interpretation of the massive monitoring data is still lagging behind. This book establishes a series of measurement interpretation frameworks that focus on bridge site environmental conditions, and global and local responses of suspension bridges. Using the proposed frameworks, it subsequently offers new insights into the structural behaviors of long-span suspension bridges. As a valuable resource for researchers, scientists and engineers in the field of bridge structural health monitoring, it provides essential information, methods, and practical algorithms that can facilitate in-service bridge performance assessments.

Book Examination of Bridge Performance Through the Extension of Simulation Modeling and Structural Identification to Large Populations of Structures

Download or read book Examination of Bridge Performance Through the Extension of Simulation Modeling and Structural Identification to Large Populations of Structures written by David Robert Masceri (Jr) and published by . This book was released on 2015 with total page 940 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-term strength and serviceability of common multi-girder bridges in the United States has been the subject of considerable inquiry in the modern era, in part due to the limited resources allocated to the preservation of large populations of bridges throughout the U.S. that are approaching the end of their originally envisioned design lives. While, the conservatism that has served the civil engineering profession well for over two centuries is still appropriate for new design, in the case of aging infrastructures it has proven ill-equipped with a resulting track record of "crying wolf.0́+ Current methods of population-scale evaluation are primarily qualitative and thus struggle to effectively support proper prioritization for preservation or replacement of the large numbers of bridges built during the infrastructure expansions of the 20th Century. The disparity between what is predicted through current methods of evaluation and what has been shown by refined quantitative testing indicates that concerns over safety are largely unfounded and hence provides little evidence for the need to drastically modify current design methodologies; therefore research in this area must concentrate on strategies for understanding this safety bias and the factors that influence its behavior on a quantifiable level so it may be used as factional information by infrastructure stakeholders. The overarching aim of the research reported herein is to establish a framework whereby realistic simulations and structural identification may be brought to bear on furthering the understanding of performance of large populations of bridges. The completed objectives outlined in this dissertation include: (1) Develop and validate an automated steel girder design/modeling tool capable of developing realistic estimates of the structural characteristics/responses for broad populations of bridges. (2) Using the tool developed in (1), establish the extent to which common design assumptions can result in deterministic trends of structural characteristics within populations of bridges. (3) Using the tool developed in (1), examine how the current practice of bridge design (inclusive of the conservatism introduced through common assumptions) may produce bridges that are capable of meeting demands that were not explicitly considered during member sizing. (4) Develop and validate a streamlined parameter identification tool capable of reliably improving the representative nature of simulation models through the use of field measurements. Key conclusions from this research include: (1) Design decisions such as diaphragm type and girder spacing that are made based on arbitrary criteria can have significant influence over the actual properties and reserve capacity of highway bridges. (2) Bias implicit in conventional design processes provides reserve capacity that is critical to accommodating limit states not explicitly considered during design. (3) When incorporating field measurements within structural assessment, it is crucial to perform model updating. The non-uniqueness associated with this inverse problem can be reduced through the updating and interpretation of both global and spatially varying deterministic parameters.