EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Parameter Estimation and Uncertainty Quantification in Water Resources Modeling

Download or read book Parameter Estimation and Uncertainty Quantification in Water Resources Modeling written by Philippe Renard and published by Frontiers Media SA. This book was released on 2020-04-22 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical models of flow and transport processes are heavily employed in the fields of surface, soil, and groundwater hydrology. They are used to interpret field observations, analyze complex and coupled processes, or to support decision making related to large societal issues such as the water-energy nexus or sustainable water management and food production. Parameter estimation and uncertainty quantification are two key features of modern science-based predictions. When applied to water resources, these tasks must cope with many degrees of freedom and large datasets. Both are challenging and require novel theoretical and computational approaches to handle complex models with large number of unknown parameters.

Book Uncertainty Quantification

Download or read book Uncertainty Quantification written by Ralph C. Smith and published by SIAM. This book was released on 2024-09-13 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty quantification serves a fundamental role when establishing the predictive capabilities of simulation models. This book provides a comprehensive and unified treatment of the mathematical, statistical, and computational theory and methods employed to quantify uncertainties associated with models from a wide range of applications. Expanded and reorganized, the second edition includes advances in the field and provides a comprehensive sensitivity analysis and uncertainty quantification framework for models from science and engineering. It contains new chapters on random field representations, observation models, parameter identifiability and influence, active subspace analysis, and statistical surrogate models, and a completely revised chapter on local sensitivity analysis. Other updates to the second edition are the inclusion of over 100 exercises and many new examples — several of which include data — and UQ Crimes listed throughout the text to identify common misconceptions and guide readers entering the field. Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition is intended for advanced undergraduate and graduate students as well as researchers in mathematics, statistics, engineering, physical and biological sciences, operations research, and computer science. Readers are assumed to have a basic knowledge of probability, linear algebra, differential equations, and introductory numerical analysis. The book can be used as a primary text for a one-semester course on sensitivity analysis and uncertainty quantification or as a supplementary text for courses on surrogate and reduced-order model construction and parameter identifiability analysis.

Book Quantifying Uncertainty in Subsurface Systems

Download or read book Quantifying Uncertainty in Subsurface Systems written by Céline Scheidt and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: A multi-disciplinary treatment of uncertainty quantification Case studies with actual data that will appeal to methodology developers A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors' Vox: eos.org/editors-vox/quantifying-uncertainty-about-earths-resources

Book Novel Approaches and Their Applications in Risk Assessment

Download or read book Novel Approaches and Their Applications in Risk Assessment written by Yuzhou Luo and published by BoD – Books on Demand. This book was released on 2012-04-20 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Risk assessment is a critical component in the evaluation and protection of natural or anthropogenic systems. Conventionally, risk assessment is involved with some essential steps such as the identification of problem, risk evaluation, and assessment review. Other novel approaches are also discussed in the book chapters. This book is compiled to communicate the latest information on risk assessment approaches and their effectiveness. Presented materials cover subjects from environmental quality to human health protection.

Book Data Assimilation for the Geosciences

Download or read book Data Assimilation for the Geosciences written by Steven J. Fletcher and published by Elsevier. This book was released on 2017-03-10 with total page 978 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Assimilation for the Geosciences: From Theory to Application brings together all of the mathematical,statistical, and probability background knowledge needed to formulate data assimilation systems in one place. It includes practical exercises for understanding theoretical formulation and presents some aspects of coding the theory with a toy problem. The book also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to the atmosphere, oceans, as well as the land surface and other geophysical situations. It offers a comprehensive presentation of the subject, from basic principles to advanced methods, such as Particle Filters and Markov-Chain Monte-Carlo methods. Additionally, Data Assimilation for the Geosciences: From Theory to Application covers the applications of data assimilation techniques in various disciplines of the geosciences, making the book useful to students, teachers, and research scientists. Includes practical exercises, enabling readers to apply concepts in a theoretical formulation Offers explanations for how to code certain parts of the theory Presents a step-by-step guide on how, and why, data assimilation works and can be used

Book Sensitivity Analysis in Earth Observation Modelling

Download or read book Sensitivity Analysis in Earth Observation Modelling written by George P. Petropoulos and published by Elsevier. This book was released on 2016-10-07 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensitivity Analysis in Earth Observation Modeling highlights the state-of-the-art in ongoing research investigations and new applications of sensitivity analysis in earth observation modeling. In this framework, original works concerned with the development or exploitation of diverse methods applied to different types of earth observation data or earth observation-based modeling approaches are included. An overview of sensitivity analysis methods and principles is provided first, followed by examples of applications and case studies of different sensitivity/uncertainty analysis implementation methods, covering the full spectrum of sensitivity analysis techniques, including operational products. Finally, the book outlines challenges and future prospects for implementation in earth observation modeling. Information provided in this book is of practical value to readers looking to understand the principles of sensitivity analysis in earth observation modeling, the level of scientific maturity in the field, and where the main limitations or challenges are in terms of improving our ability to implement such approaches in a wide range of applications. Readers will also be informed on the implementation of sensitivity/uncertainty analysis on operational products available at present, on global and continental scales. All of this information is vital in the selection process of the most appropriate sensitivity analysis method to implement. - Outlines challenges and future prospects of sensitivity analysis implementation in earth observation modeling - Provides readers with a roadmap for directing future efforts - Includes case studies with applications from different regions around the globe, helping readers to explore strengths and weaknesses of the different methods in earth observation modeling - Presents a step-by-step guide, providing the principles of each method followed by the application of variants, making the reference easy to use and follow

Book Quantifying Uncertainty in Subsurface Systems

Download or read book Quantifying Uncertainty in Subsurface Systems written by Céline Scheidt and published by John Wiley & Sons. This book was released on 2018-05-08 with total page 645 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: A multi-disciplinary treatment of uncertainty quantification Case studies with actual data that will appeal to methodology developers A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors' Vox: eos.org/editors-vox/quantifying-uncertainty-about-earths-resources

Book Applied Statistical Modeling and Data Analytics

Download or read book Applied Statistical Modeling and Data Analytics written by Srikanta Mishra and published by Elsevier. This book was released on 2017-10-27 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Statistical Modeling and Data Analytics: A Practical Guide for the Petroleum Geosciences provides a practical guide to many of the classical and modern statistical techniques that have become established for oil and gas professionals in recent years. It serves as a "how to" reference volume for the practicing petroleum engineer or geoscientist interested in applying statistical methods in formation evaluation, reservoir characterization, reservoir modeling and management, and uncertainty quantification. Beginning with a foundational discussion of exploratory data analysis, probability distributions and linear regression modeling, the book focuses on fundamentals and practical examples of such key topics as multivariate analysis, uncertainty quantification, data-driven modeling, and experimental design and response surface analysis. Data sets from the petroleum geosciences are extensively used to demonstrate the applicability of these techniques. The book will also be useful for professionals dealing with subsurface flow problems in hydrogeology, geologic carbon sequestration, and nuclear waste disposal. - Authored by internationally renowned experts in developing and applying statistical methods for oil & gas and other subsurface problem domains - Written by practitioners for practitioners - Presents an easy to follow narrative which progresses from simple concepts to more challenging ones - Includes online resources with software applications and practical examples for the most relevant and popular statistical methods, using data sets from the petroleum geosciences - Addresses the theory and practice of statistical modeling and data analytics from the perspective of petroleum geoscience applications

Book Modeling Uncertainty in Metric Space

Download or read book Modeling Uncertainty in Metric Space written by Kwangwon Park and published by Stanford University. This book was released on 2011 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling uncertainty for future prediction requires drawing multiple posterior models. Such drawing within a Bayesian framework is dependent on the likelihood (data-model relationship) as well as prior distribution of the model variables, For the uncertainty assessment in the Earth models, we propose the framework of Modeling Uncertainty in Metric Space (MUMS) to achieve this in a general way. MUMS constructs a metric space where the models are represented exclusively by a distance correlated with or equal to the difference in their responses (application-tailored distance). In the framework of MUMS, various operations are available: projection of metric space by multi-dimensional scaling, model expansion by kernel Karhunen-Loeve expansion, generation of additional prior model by solving the pre-image problem, and generation of multiple posterior models by solving the post-image problem. We propose a robust solution for the pre-image problem: geologically constrained optimization, which utilizes the probability perturbation method from the solution of the fixed-point iteration algorithm. Additionally, we introduce a so-called post-image problem for obtaining the feature expansion of the ''true Earth'' by defining a distance as the difference in their responses. The combination of geologically constrained optimization and the post-image problem efficiently generates multiple posterior Earth models constrained to prior geologic information, hard data, and nonlinear time-dependent data. The proposed method provides a realistic uncertainty model for future prediction, compared with the result of the rejection sampler. We also propose a metric ensemble Kalman filter (Metric EnKF), which applies the ensemble Kalman filter (EnKF) to the parameterizations by the kernel KL expansion in metric space. Metric EnKF overcomes some critical limitations of EnKF: it preserves prior geologic information; it creates a stable and consistent filtering. However, the results of Metric EnKF applied to various cases including the Brugge field-scale synthetic reservoir show the same problem as with the EnKF in general, that is, it does not provide a realistic uncertainty model.

Book Uncertainty Quantification in Laminated Composites

Download or read book Uncertainty Quantification in Laminated Composites written by Sudip Dey and published by CRC Press. This book was released on 2018-09-19 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last few decades, uncertainty quantification in composite materials and structures has gained a lot of attention from the research community as a result of industrial requirements. This book presents computationally efficient uncertainty quantification schemes following meta-model-based approaches for stochasticity in material and geometric parameters of laminated composite structures. Several metamodels have been studied and comparative results have been presented for different static and dynamic responses. Results for sensitivity analyses are provided for a comprehensive coverage of the relative importance of different material and geometric parameters in the global structural responses.

Book Uncertainty  Modeling  and Decision Making in Geotechnics

Download or read book Uncertainty Modeling and Decision Making in Geotechnics written by Kok-Kwang Phoon and published by CRC Press. This book was released on 2023-12-11 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty, Modeling, and Decision Making in Geotechnics shows how uncertainty quantification and numerical modeling can complement each other to enhance decision-making in geotechnical practice, filling a critical gap in guiding practitioners to address uncertainties directly. The book helps practitioners acquire a working knowledge of geotechnical risk and reliability methods and guides them to use these methods wisely in conjunction with data and numerical modeling. In particular, it provides guidance on the selection of realistic statistics and a cost-effective, accessible method to address different design objectives, and for different problem settings, and illustrates the value of this to decision-making using realistic examples. Bringing together statistical characterization, reliability analysis, reliability-based design, probabilistic inverse analysis, and physical insights drawn from case studies, this reference guide from an international team of experts offers an excellent resource for state-of-the-practice uncertainty-informed geotechnical design for specialist practitioners and the research community.

Book Model Calibration and Parameter Estimation

Download or read book Model Calibration and Parameter Estimation written by Ne-Zheng Sun and published by Springer. This book was released on 2015-07-01 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-part book provides a comprehensive and systematic introduction to these challenging topics such as model calibration, parameter estimation, reliability assessment, and data collection design. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get familiar with advanced methods for modeling complex systems. Algorithms for mathematical tools used in this book, such as numerical optimization, automatic differentiation, adaptive parameterization, hierarchical Bayesian, metamodeling, Markov chain Monte Carlo, are covered in details. This book can be used as a reference for graduate and upper level undergraduate students majoring in environmental engineering, hydrology, and geosciences. It also serves as an essential reference book for professionals such as petroleum engineers, mining engineers, chemists, mechanical engineers, biologists, biology and medical engineering, applied mathematicians, and others who perform mathematical modeling.

Book Agriculture as a Metaphor for Creativity in All Human Endeavors

Download or read book Agriculture as a Metaphor for Creativity in All Human Endeavors written by Robert S. Anderssen and published by Springer. This book was released on 2018-03-13 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of papers presented at the 'Forum "Math-for-Industry" 2016 ' (FMfl2016), held at Queensland University of Technology, Brisbane, Australia, on November 21–23, 2016. The theme for this unique and important event was “Agriculture as a Metaphor for Creativity in All Human Endeavors”, and it brought together leading international mathematicians and active researchers from universities and industry to discuss current challenging topics and to promote interactive collaborations between mathematics and industry. The success of agricultural practice relies fundamentally on its interconnections with and dependence on biology and the environment. Both play essential roles, including the biological adaption to cope with environmental challenges of biotic and abiotic stress and global warming. The book highlights the development of mathematics within this framework that successful agricultural practice depends upon and exploits.

Book Uncertainty Quantification in Multiscale Materials Modeling

Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-12 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.

Book Uncertainty Quantification in Scientific Computing

Download or read book Uncertainty Quantification in Scientific Computing written by Andrew Dienstfrey and published by Springer. This book was released on 2014-09-20 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed post-proceedings of the 10th IFIP WG 2.5 Working Conference on Uncertainty Quantification in Scientific Computing, WoCoUQ 2011, held in Boulder, CO, USA, in August 2011. The 24 revised papers were carefully reviewed and selected from numerous submissions. They are organized in the following topical sections: UQ need: risk, policy, and decision making, UQ theory, UQ tools, UQ practice, and hot topics. The papers are followed by the records of the discussions between the participants and the speaker.

Book Handbook of Mathematical Geosciences

Download or read book Handbook of Mathematical Geosciences written by B.S. Daya Sagar and published by Springer. This book was released on 2018-06-25 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.

Book Uncertainty Analysis and Reservoir Modeling

Download or read book Uncertainty Analysis and Reservoir Modeling written by Y. Zee Ma and published by AAPG. This book was released on 2011-12-20 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: