Download or read book Handbook of Uncertainty Quantification written by Roger Ghanem and published by Springer. This book was released on 2016-05-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.
Download or read book Quantifying Uncertainty in Subsurface Systems written by Céline Scheidt and published by John Wiley & Sons. This book was released on 2018-06-19 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under the Earth's surface is a rich array of geological resources, many with potential use to humankind. However, extracting and harnessing them comes with enormous uncertainties, high costs, and considerable risks. The valuation of subsurface resources involves assessing discordant factors to produce a decision model that is functional and sustainable. This volume provides real-world examples relating to oilfields, geothermal systems, contaminated sites, and aquifer recharge. Volume highlights include: A multi-disciplinary treatment of uncertainty quantification Case studies with actual data that will appeal to methodology developers A Bayesian evidential learning framework that reduces computation and modeling time Quantifying Uncertainty in Subsurface Systems is a multidisciplinary volume that brings together five major fields: information science, decision science, geosciences, data science and computer science. It will appeal to both students and practitioners, and be a valuable resource for geoscientists, engineers and applied mathematicians. Read the Editors' Vox: eos.org/editors-vox/quantifying-uncertainty-about-earths-resources
Download or read book Introduction to Uncertainty Quantification written by T.J. Sullivan and published by Springer. This book was released on 2015-12-14 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.
Download or read book Verification and Validation in Scientific Computing written by William L. Oberkampf and published by Cambridge University Press. This book was released on 2010-10-14 with total page 782 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in scientific computing have made modelling and simulation an important part of the decision-making process in engineering, science, and public policy. This book provides a comprehensive and systematic development of the basic concepts, principles, and procedures for verification and validation of models and simulations. The emphasis is placed on models that are described by partial differential and integral equations and the simulations that result from their numerical solution. The methods described can be applied to a wide range of technical fields, from the physical sciences, engineering and technology and industry, through to environmental regulations and safety, product and plant safety, financial investing, and governmental regulations. This book will be genuinely welcomed by researchers, practitioners, and decision makers in a broad range of fields, who seek to improve the credibility and reliability of simulation results. It will also be appropriate either for university courses or for independent study.
Download or read book Uncertainty Quantification written by Ralph C. Smith and published by SIAM. This book was released on 2013-12-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.
Download or read book Uncertainty Quantification written by Ralph C. Smith and published by SIAM. This book was released on 2013-12-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of uncertainty quantification is evolving rapidly because of increasing emphasis on models that require quantified uncertainties for large-scale applications, novel algorithm development, and new computational architectures that facilitate implementation of these algorithms. Uncertainty Quantification: Theory, Implementation, and Applications provides readers with the basic concepts, theory, and algorithms necessary to quantify input and response uncertainties for simulation models arising in a broad range of disciplines. The book begins with a detailed discussion of applications where uncertainty quantification is critical for both scientific understanding and policy. It then covers concepts from probability and statistics, parameter selection techniques, frequentist and Bayesian model calibration, propagation of uncertainties, quantification of model discrepancy, surrogate model construction, and local and global sensitivity analysis. The author maintains a complementary web page where readers can find data used in the exercises and other supplementary material.
Download or read book Sensitivity Analysis in Practice written by Andrea Saltelli and published by John Wiley & Sons. This book was released on 2004-07-16 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sensitivity analysis should be considered a pre-requisite for statistical model building in any scientific discipline where modelling takes place. For a non-expert, choosing the method of analysis for their model is complex, and depends on a number of factors. This book guides the non-expert through their problem in order to enable them to choose and apply the most appropriate method. It offers a review of the state-of-the-art in sensitivity analysis, and is suitable for a wide range of practitioners. It is focussed on the use of SIMLAB – a widely distributed freely-available sensitivity analysis software package developed by the authors – for solving problems in sensitivity analysis of statistical models. Other key features: Provides an accessible overview of the current most widely used methods for sensitivity analysis. Opens with a detailed worked example to explain the motivation behind the book. Includes a range of examples to help illustrate the concepts discussed. Focuses on implementation of the methods in the software SIMLAB - a freely-available sensitivity analysis software package developed by the authors. Contains a large number of references to sources for further reading. Authored by the leading authorities on sensitivity analysis.
Download or read book Basics and Trends in Sensitivity Analysis Theory and Practice in R written by Sébastien Da Veiga and published by SIAM. This book was released on 2021-10-14 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of global sensitivity analysis methods and algorithms, including their theoretical basis and mathematical properties. The authors use a practical point of view and real case studies as well as numerous examples, and applications of the different approaches are illustrated throughout using R code to explain their usage and usefulness in practice. Basics and Trends in Sensitivity Analysis: Theory and Practice in R covers a lot of material, including theoretical aspects of Sobol’ indices as well as sampling-based formulas, spectral methods, and metamodel-based approaches for estimation purposes; screening techniques devoted to identifying influential and noninfluential inputs; variance-based measures when model inputs are statistically dependent (and several other approaches that go beyond variance-based sensitivity measures); and a case study in R related to a COVID-19 epidemic model where the full workflow of sensitivity analysis combining several techniques is presented. This book is intended for engineers, researchers, and undergraduate students who use complex numerical models and have an interest in sensitivity analysis techniques and is appropriate for anyone with a solid mathematical background in basic statistical and probability theories who develops and uses numerical models in all scientific and engineering domains.
Download or read book Parameter Estimation and Uncertainty Quantification in Water Resources Modeling written by Philippe Renard and published by Frontiers Media SA. This book was released on 2020-04-22 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical models of flow and transport processes are heavily employed in the fields of surface, soil, and groundwater hydrology. They are used to interpret field observations, analyze complex and coupled processes, or to support decision making related to large societal issues such as the water-energy nexus or sustainable water management and food production. Parameter estimation and uncertainty quantification are two key features of modern science-based predictions. When applied to water resources, these tasks must cope with many degrees of freedom and large datasets. Both are challenging and require novel theoretical and computational approaches to handle complex models with large number of unknown parameters.
Download or read book Active Subspaces written by Paul G. Constantine and published by SIAM. This book was released on 2015-03-17 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.
Download or read book Bayesian Approach to Inverse Problems written by Jérôme Idier and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.
Download or read book Large Scale Inverse Problems and Quantification of Uncertainty written by Lorenz Biegler and published by John Wiley & Sons. This book was released on 2011-06-24 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.
Download or read book Uncertainty Quantification and Model Calibration written by Jan Peter Hessling and published by BoD – Books on Demand. This book was released on 2017-07-05 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty quantification may appear daunting for practitioners due to its inherent complexity but can be intriguing and rewarding for anyone with mathematical ambitions and genuine concern for modeling quality. Uncertainty quantification is what remains to be done when too much credibility has been invested in deterministic analyses and unwarranted assumptions. Model calibration describes the inverse operation targeting optimal prediction and refers to inference of best uncertain model estimates from experimental calibration data. The limited applicability of most state-of-the-art approaches to many of the large and complex calculations made today makes uncertainty quantification and model calibration major topics open for debate, with rapidly growing interest from both science and technology, addressing subtle questions such as credible predictions of climate heating.
Download or read book The Uncertainty in Physical Measurements written by Paolo Fornasini and published by Springer Science & Business Media. This book was released on 2008-09-18 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scienti c method is based on the measurement of di erent physical qu- tities and the search for relations between their values. All measured values of physical quantities are, however, a ected by uncertainty. Understanding the origin of uncertainty, evaluating its extent, and suitably taking it into account in data analysis, are fundamental steps for assessing the global accuracy of physical laws and the degree of reliability of their technological applications. The introduction to uncertainty evaluation and data analysis procedures is generally made in laboratory courses for freshmen. During my long-lasting teaching experience, I had the feeling of some sort of gap between the ava- able tutorial textbooks, and the specialized monographs. The present work aims at lling this gap, and has been tested and modi ed through a feedback interaction with my students for several years. I have tried to maintain as much as possible a tutorial approach, that, starting from a phenomenolo- cal introduction, progressively leads to an accurate de nition of uncertainty and to some of the most common procedures of data analysis, facilitating the access to advanced monographs. This book is mainly addressed to - dergraduate students, but can be a useful reference for researchers and for secondary school teachers. The book is divided into three parts and a series of appendices. Part I is devoted to a phenomenological introduction to measurement and uncertainty. In Chap.
Download or read book Multifaceted Uncertainty Quantification written by Isaac Elishakoff and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-09-23 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book exposes three alternative and competing approaches to uncertainty analysis in engineering. It is composed of some essays on various sub-topics like random vibrations, probabilistic reliability, fuzzy-sets-based analysis, unknown-but-bounded variables, stochastic linearization, possible difficulties with stochastic analysis of structures.
Download or read book Large Scale Inverse Problems and Quantification of Uncertainty written by Lorenz Biegler and published by Wiley. This book was released on 2010-11-15 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: • Brings together the perspectives of researchers in areas of inverse problems and data assimilation. • Assesses the current state-of-the-art and identify needs and opportunities for future research. • Focuses on the computational methods used to analyze and simulate inverse problems. • Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.
Download or read book Inverse Heat Transfer written by Helcio R.B. Orlande and published by CRC Press. This book was released on 2021-03-24 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the fundamental concepts of inverse heat transfer solutions and their application for solving problems in convective, conductive, radiative, and multi-physics problems. Inverse Heat Transfer: Fundamentals and Applications, Second Edition includes techniques within the Bayesian framework of statistics for solution of inverse problems. By modernizing the classic work of the late Professor M. Necat Ozisik and adding new examples and problems, this new edition provides a powerful tool for instructors, researchers, and graduate students studying thermal-fluid systems and heat transfer. FEATURES Introduces the fundamental concepts of inverse heat transfer Presents in systematic fashion the basic steps of powerful inverse solution techniques Develops inverse techniques of parameter estimation, function estimation, and state estimation Applies these inverse techniques to the solution of practical inverse heat transfer problems Shows inverse techniques for conduction, convection, radiation, and multi-physics phenomena Helcio R. B. Orlande is a Professor of Mechanical Engineering at the Federal University of Rio de Janeiro (UFRJ), where he was the Department Head from 2006 to 2007.