EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy

Download or read book Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy written by Gang Ho Lee and published by Woodhead Publishing. This book was released on 2014-11-22 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most books discuss general and broad topics regarding molecular imagings. However, Ultrasmall Lanthanide Oxide Nanoparticles for Biomedical Imaging and Therapy, will mainly focus on lanthanide oxide nanoparticles for molecular imaging and therapeutics. Multi-modal imaging capabilities will discussed, along with up-converting FI by using lanthanide oxide nanoparticles. The synthesis will cover polyol synthesis of lanthanide oxide nanoparticles, Surface coatings with biocompatible and hydrophilic ligands will be discussed and TEM images and dynamic light scattering (DLS) patterns will be provided. Various techniques which are generally used in analyzing the synthesized surface coated nanoparticles will be explored and this section will also cover FT­, IR analysis, XRD analysis, SQUID analysis, cytotoxicity measurements and proton relaxivity measurements. In vivo MR images, CT images, fluorescence images will be provided and Therapeutic application of gadolinium oxide nanoparticles will be discussed. Finally, future perpectives will be discussed. That is, present status and future works needed for clinical applications of lanthanide oxide nanoparticles to molecular imagings will be discussed. Synthesis will be discussed in detail General characterizations of nanoparticles before in vivo applications will be discussed The book will cover all possible applications of lanthanide oxide nanoparticles to molecular imagings such as MRI, CT, FI as well as therapeutics

Book Noble Metal Metal Oxide Hybrid Nanoparticles

Download or read book Noble Metal Metal Oxide Hybrid Nanoparticles written by Satyabrata Mohapatra and published by Elsevier. This book was released on 2018-10-11 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications sets out concepts and emerging applications of hybrid nanoparticles in biomedicine, antibacterial, energy storage and electronics. The hybridization of noble metals (Gold, Silver, Palladium and Platinum) with metal-oxide nanoparticles exhibits superior features when compared to individual nanoparticles. In some cases, metal oxides act as semiconductors, such as nano zinc oxide or titanium oxide nanoparticles, where their hybridization with silver nanoparticles, enhanced significantly their photocatalytic efficiency. The book highlights how such nanomaterials are used for practical applications. Examines the properties of metal-metal oxide hybrid nanoparticles that make them so adaptable Explores the mechanisms by which nanoparticles interact with each other, showing how these can be exploited for practical applications Shows how metal oxide hybrid nanomaterials are used in a range of industry sectors, including energy, the environment and healthcare

Book Biobased Materials

Download or read book Biobased Materials written by Ajay Kumar Mishra and published by Springer Nature. This book was released on 2022-10-19 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the extraction, purification, modification, and processing of biobased materials and their various industrial applications, across biomedical, pharmaceutical, construction, and other industries. It includes contributions from experts on hybrid biopolymers and bio-composites, bioactive and biodegradable materials, bio-inert polymers, natural polymers and composites, and metallic natural materials. Therefore, this encyclopedia is a useful reference for scientists, academicians, research scholars, and technologists. Major challenges of biobased materials are their efficient development, cost-effective, and green & environment friendly production/applications. This encyclopedia answers these challenges to professionals and scientists for proper utilization of biobased materials. It presents the recent practices of biobased materials technology in different scientific and engineering domains. It helps the bounded industrial outcomes to reach the general readership of different domains. This encyclopedia bridges the technological gaps between the industrial and academic professionals and the novice young students/scholars. The interdisciplinarity of this encyclopedia makes it unique for a wide readership. The topic of biobased materials is currently popular in the scientific community, working in such following areas as Recycled materials, Renewable materials, Materials for efficiency, Materials for waste treatment, Materials for reduction of environmental load, Materials for easy disposal or recycle, Hazardous free materials, Materials for reducing human health impact, Materials for energy efficiency, Materials for green energy, etc. This is a relatively hot topic in materials science and has strong demands for energy, material and money savings, as well as heavy contamination problems, despite that the area of biobased materials belongs to most important fields of modern science & technology, no important encyclopedias have been published in the area of “biobased materials”

Book Iron Oxide Nanoparticles for Biomedical Applications

Download or read book Iron Oxide Nanoparticles for Biomedical Applications written by Sophie Laurent and published by Elsevier. This book was released on 2017-10-20 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application begins with several chapters covering the synthesis, stabilization, physico-chemical characterization and functionalization of iron oxide nanoparticles. The second part of the book outlines the various biomedical imaging applications that currently take advantage of the magnetic properties of iron oxide nanoparticles. Brief attention is given to potential iron oxide based therapies, while the final chapter covers nanocytotoxicity, which is a key concern wherever exposure to nanomaterials might occur. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of iron oxide nanoparticles in biomedicine. Unlocks the potential of iron oxide nanoparticles to transform diagnostic imaging techniques Contains full coverage of new developments and recent research, making this essential reading for researchers and engineers alike Explains the synthesis, processing and characterization of iron oxide nanoparticles with a view to their use in biomedicine

Book Shape Dependent Iron Oxide Nanoparticles for Simultaneous Imaging and Therapy

Download or read book Shape Dependent Iron Oxide Nanoparticles for Simultaneous Imaging and Therapy written by Jennifer Sherwood and published by . This book was released on 2018 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary focus of this dissertation is to explore the use of shape dependent iron oxide nanoparticles as magnetic resonance imaging contrast agents. In addition to biocompatibility, nanoparticles provide a foundation for implementing imaging guided drug delivery systems. We begin with the synthesis of iron oxide nanoparticles of varying sizes and shapes. Specifically, large (>4 nm) spherical particles, ultrasmall (

Book Hybrid Imaging in Cardiovascular Medicine

Download or read book Hybrid Imaging in Cardiovascular Medicine written by Yi-Hwa Liu and published by CRC Press. This book was released on 2017-10-31 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book focuses on multimodality imaging technology, including overviews of the instruments and methods followed by practical case studies that highlight use in the detection and treatment of cardiovascular diseases. Chapters cover PET-CT, SPECT-CT, SPECT-MRI, PET-MRI, PET-optical imaging, SPECT-optical imaging, photoacoustic Imaging, and hybrid intravascular imaging. It also addresses the important issues of multimodality imaging probes and image quantification. Readers from radiology and cardiology as well as medical imaging and biomedical engineering will learn essentials of the field. They will be shown how the field has advanced quantitative analysis of molecularly targeted imaging through improvements in the reliability and reproducibility of imaging data. Moreover, they will be presented with quantification algorithms and case illustrations, including coverage of such topics such as multimodality image fusion and kinetic modeling. Yi-Hwa Liu, PhD is Senior Research Scientist in Cardiovascular Medicine at Yale University School of Medicine and Technical Director of Nuclear Cardiology at Yale New Haven Hospital. He is also an Associate Professor (Adjunct) of Biomedical Imaging and Radiological Sciences at National Yang-Ming University, Taipei, Taiwan, and Professor (Adjunct) of Biomedical Engineering at Chung Yuan Christian University, Taoyuan, Taiwan. He is an elected senior member of Institute of Electrical and Electronic Engineers (IEEE) and a full member of Sigma Xi of The Scientific Research Society of North America. Albert J. Sinusas, M.D., FACC, FAHA is Professor of Medicine (Section of Cardiovascular Medicine) and Radiology and Biomedical Imaging, at Yale University School of Medicine, and Director of the Yale Translational Research Imaging Center (Y-TRIC), and Director of Advanced Cardiovascular Imaging at Yale New Haven Hospital. He is a recipient of the Society of Nuclear Medicine’s Hermann Blumgart Award.

Book Nanomaterial   Based Biomedical Applications in Molecular Imaging  Diagnostics and Therapy

Download or read book Nanomaterial Based Biomedical Applications in Molecular Imaging Diagnostics and Therapy written by Amitabha Acharya and published by Springer Nature. This book was released on 2020-05-23 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively reviews the recent advances in nanomaterial-based molecular imaging, diagnostics, and personalized therapy. It discusses the novel biocompatible fluorescent nanomaterials, their synthesis, and modern state of art characterization, as well as the various strategies for immobilization of biomacromolecules on the nanomaterial surface and approaches for increasing their stability. In addition, the book describes the synthesis of lectin nanoconjugates using different types of biocompatible raw materials and their systematic characterization. Lastly, it presents our current understanding of the biomolecular carona, which affects nanoparticle-based targeted drug delivery, and examines the conceptual approaches to improve the in-vivo efficacy of targeted drug delivery.

Book Synthesis and in Vivo Biomedical Applications of Ultrasmall Metal Nanoparticles

Download or read book Synthesis and in Vivo Biomedical Applications of Ultrasmall Metal Nanoparticles written by Shahab Ranjbar Bahadori and published by . This book was released on 2022 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decade, metal-based nanoparticles (MNPs) have gained much popularity in the field of nanomedicine owing to their exceptional physiochemical properties. Easy surface functionalization and conjugation with therapeutic moieties, stability, inertness, and inherent anticancer activities make MNPs promising diagnostic and therapeutic agents. Among different sizes of MNPs, which greatly affect their biodistribution and clearance, ultrasmall metal nanoparticles with the size less than 5 nm demonstrate unique pharmacokinetic properties, making them suitable for nanomedicinal applications. Therefore, many efforts have been made to synthesize various kinds of ultrasmall metal nanoparticles. In this study, a revolutionary synthesis method, termed as liquid diffusion synthesis (LDS) was developed to produce ultrasmall metal nanoparticles. In this new approach, simply immersing a dialysis bag containing an aqueous solution of a metal salt mixed with citric acid in a NaOH solution reservoir for tens of minutes, few-nm sized nanoparticles form inside the dialysis bag. Not only is this process exceptionally simple and cost effective, conducting at room temperature using aqueous solution of metal salt, citric acid and NaOH, but also it can produce a wide range of colloidal nanocrystals, covering all possible ultrasmall metal nanocrystals used as nanomedicine. Using this method, the synthesis of ultrasmall metal nanocrystals of Co, Ni, Cu, Au, Ag, Pd, Pt, and Lu have been demonstrated. Also, ultrasmall metal oxide nanoparticles can be produced using the same method. Ultrasmall nanoparticles of MnO, RuO2, Cu2O, FeO, ZnO2, and CeO2 have been synthesized. A mechanistic study was conducted to reveal the nanoparticle formation mechanism. It was found that the gradual change of the solution pH caused by the diffusion of OH- ions through the dialysis membrane played an essential role in the formation of these nanocrystals. Synthesized ultrasmall Cu nanoparticles have preliminarily been tested for its in vivo biomedical applications. It shows that Cu nanoparticles are stable in phosphate-buffered saline and fatal bovine serum. In vivo studies shows the renal clearability of Cu nanoparticles; about 67% of nanoparticles is excreted via urine after 48 hours of injection.

Book Nanoparticles in Biomedical Imaging

Download or read book Nanoparticles in Biomedical Imaging written by Jeff W.M. Bulte and published by Springer Science & Business Media. This book was released on 2007-11-22 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: The current generation of imaging nanoparticles is diverse and dependent on its myriad of applications. This book provides an overview of how these imaging particles can be designed to fulfill specific requirements for applications across different imaging modalities. It presents, for the first time, a comprehensive interdisciplinary overview of the impact nanoparticles have on biomedical imaging and is a common central resource for researchers and teachers.

Book Industrial and Technological Applications of Transport in Porous Materials

Download or read book Industrial and Technological Applications of Transport in Porous Materials written by J.M.P.Q. Delgado and published by Springer Science & Business Media. This book was released on 2013-08-17 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book, Industrial and Technological Applications of Transport in Porous Materials, is to provide a collection of recent contributions in the field of heat and mass transfer in porous media and their industrial and technological applications. The main benefit of the book is that it discusses some of the most important topics related to transport phenomenon in engineering and their future applications. It includes a set of new technological applications in the field of heat and mass transfer phenomena in a porous medium domain, such as, drying technology, filtration, infrared thermography, energy, recycling, etc. At the same time, these topics will be going to the encounter of a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering, etc. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of professional colleagues.

Book Radiopharmaceutical Chemistry

Download or read book Radiopharmaceutical Chemistry written by Jason S. Lewis and published by Springer. This book was released on 2019-04-02 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive guide to radiopharmaceutical chemistry. The stunning clinical successes of nuclear imaging and targeted radiotherapy have resulted in rapid growth in the field of radiopharmaceutical chemistry, an essential component of nuclear medicine and radiology. However, at this point, interest in the field outpaces the academic and educational infrastructure needed to train radiopharmaceutical chemists. For example, the vast majority of texts that address radiopharmaceutical chemistry do so only peripherally, focusing instead on nuclear chemistry (i.e. nuclear reactions in reactors), heavy element radiochemistry (i.e. the decomposition of radioactive waste), or solely on the clinical applications of radiopharmaceuticals (e.g. the use of PET tracers in oncology). This text fills that gap by focusing on the chemistry of radiopharmaceuticals, with key coverage of how that knowledge translates to the development of diagnostic and therapeutic radiopharmaceuticals for the clinic. The text is divided into three overarching sections: First Principles, Radiochemistry, and Special Topics. The first is a general overview covering fundamental and broad issues like “The Production of Radionuclides” and “Basics of Radiochemistry”. The second section is the main focus of the book. In this section, each chapter’s author will delve much deeper into the subject matter, covering both well established and state-of-the-art techniques in radiopharmaceutical chemistry. This section will be divided according to radionuclide and will include chapters on radiolabeling methods using all of the common nuclides employed in radiopharmaceuticals, including four chapters on the ubiquitously used fluorine-18 and a “Best of the Rest” chapter to cover emerging radionuclides. Finally, the third section of the book is dedicated to special topics with important information for radiochemists, including “Bioconjugation Methods,” “Click Chemistry in Radiochemistry”, and “Radiochemical Instrumentation.” This is an ideal educational guide for nuclear medicine physicians, radiologists, and radiopharmaceutical chemists, as well as residents and trainees in all of these areas.

Book Handbook on the Physics and Chemistry of Rare Earths

Download or read book Handbook on the Physics and Chemistry of Rare Earths written by and published by Elsevier. This book was released on 2016-10-31 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook on the Physics and Chemistry of Rare Earths: Including Actinides is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science, and physics. The book's main emphasis is on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but whenever relevant, information is also included on the closely related actinide elements. Individual chapters are comprehensive, broad, up-to-date, critical reviews written by highly experienced, invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines, and integrates, both the fundamentals and applications of these elements with two published volumes each year. Presents up-to-date overviews and new developments in the field of rare earths, covering both their physics and chemistry Contains Individual chapters that are comprehensive and broad, with critical reviews Provides contributions from highly experienced, invited experts

Book Iron Oxide Nanoparticles for Biomedical Applications

Download or read book Iron Oxide Nanoparticles for Biomedical Applications written by Sophie Laurent and published by Elsevier. This book was released on 2017-10-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iron Oxide Nanoparticles for Biomedical Applications: Synthesis, Functionalization and Application begins with several chapters covering the synthesis, stabilization, physico-chemical characterization and functionalization of iron oxide nanoparticles. The second part of the book outlines the various biomedical imaging applications that currently take advantage of the magnetic properties of iron oxide nanoparticles. Brief attention is given to potential iron oxide based therapies, while the final chapter covers nanocytotoxicity, which is a key concern wherever exposure to nanomaterials might occur. This comprehensive book is an essential reference for all those academics and professionals who require thorough knowledge of recent and future developments in the role of iron oxide nanoparticles in biomedicine.

Book Therapeutic and Diagnostic Nanomaterials

Download or read book Therapeutic and Diagnostic Nanomaterials written by Devasena T and published by Springer. This book was released on 2016-07-19 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief highlights nanoparticles used in the diagnosis and treatment of prominent diseases and toxic conditions. Ecofriendly methods which are ideal for the synthesis of medicinally valued nanoparticles are explained and the characteristic features of these particles projected. The role of these particles in the therapeutic field, and the induced biological changes in some diseases are discussed. The main focus is on inflammation, oxidative stress and cellular membrane integrity alterations. The effect of nanoparticles on these changes produced by various agents are highlighted using in vitro and in vivo models. The mechanism of nanoparticles in ameliorating the biological changes is supported by relevant images and data. Finally, the brief demonstrates recent developments on the use of nanoparticles in diagnosis or sensing of some biological materials and biologically hazardous environmental materials.

Book Novel Nanomaterials for Biomedical  Environmental and Energy Applications

Download or read book Novel Nanomaterials for Biomedical Environmental and Energy Applications written by Xiaoru Wang and published by Elsevier. This book was released on 2018-11-16 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel Nanomaterials for Biomedical, Environmental, and Energy Applications is a comprehensive study on the cutting-edge progress in the synthesis and characterization of novel nanomaterials and their subsequent advances and uses in biomedical, environmental and energy applications. Covering novel concepts and key points of interest, this book explores the frontier applications of nanomaterials. Chapters discuss the overall progress of novel nanomaterial applications in the biomedical, environmental and energy fields, introduce the synthesis, characterization, properties and applications of novel nanomaterials, discuss biomedical applications, and cover the electrocatalytical and photothermal effects of novel nanomaterials for efficient energy applications. The book will be invaluable to academic researchers and biomedical clinicians working with nanomaterials. Offers comprehensive details on novel and emerging nanomaterials Presents a comprehensive view of new and emerging tactics for the synthesis of efficient nanomaterials Describes and monitors the functions of applications of new and emerging nanomaterials in the biomedical, environmental and energy fields

Book Electromagnetic Waves Based Cancer Diagnosis and Therapy

Download or read book Electromagnetic Waves Based Cancer Diagnosis and Therapy written by Mona Khafaji and published by Elsevier. This book was released on 2023-04-13 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electromagnetic Waves-Based Cancer Diagnosis and Therapy: Principles and Applications of Nanomaterials is a reference solution for radiation-based methods in cancer therapy that benefit from nanosystems. The book gives foundational knowledge and the latest techniques across the electromagnetic wave spectrum. It assesses the advantages and limitations of nanosystems in therapy, providing researchers and specialists with the insight to leverage novel nanostructures for therapy and to improve the efficacy of existing methods. It presents a comprehensive reference on the use of nanosystems in radiation-based cancer therapy. What makes this book unique is its coverage of the electromagnetic wave spectrum. Six chapters cover radio-wave-involved cancer therapy and imaging; cancer therapy by microwaves hypothermia; infra-red waves in cancer theranostics; the use of visible light in diagnosis; X-ray based treatments; and gamma ray-involved therapy and imaging. This book offers researchers and specialists a comprehensive overview of radiation-based methods using nanosystems. It will be of great use to researchers and specialists in cancer diagnosis who want to take advantage of novel nanostructures and to improve the performance of conventional methods in radiation-based cancer diagnosis and therapy. Provides a comprehensive reference of radiation-based methods in cancer therapy benefiting from nanosystems Presents advantages and limitations in the use of nanosystems for radiation-based methods in cancer therapy Helps researchers and specialists leverage the potential of novel nanostructures for therapy Offers ways to improve the performance of conventical methods using nanosystems, making this a one-stop solution to the use of nanosystems in radiation-based cancer therapy

Book Smart Tools for Smart Applications

Download or read book Smart Tools for Smart Applications written by Francesca Garello and published by MDPI. This book was released on 2021-03-10 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, micro- and nanosystems with magnetic properties have been extensively investigated in many fields, ranging from physics to medicine. The research in these areas has lately shown that if the magnetic compounds are opportunely functionalized and modified with moieties and specific functional groups, a plethora of challenging multidisciplinary applications is available, including the development of magnetically controlled particles, stimuli-responsive materials, magnetically guided chemical/drug-delivery systems, sensors, spintronics, separation and purification of contaminated groundwater and soils, ferrofluids and magnetorheological fluids, contrast agents for MRI, and internal sources of heat for the thermoablation of cancer. Magnetic compounds have been found to be highly selective and effective in all these application fields, from the molecular level to the microscale. This book aims at underlining the latest advances in the field of magnetic compounds, nanosystems, and materials, covering a large variety of topics related to novel synthesis and functionalization methods and the properties, applications, and use of magnetic systems in chemistry, materials science, diagnostics, and medical therapy.