EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Ultrafast Electronic Spectroscopy of Simple Molecular Systems in the Condensed Phase

Download or read book Ultrafast Electronic Spectroscopy of Simple Molecular Systems in the Condensed Phase written by Matthew F. Wolford and published by . This book was released on 2002 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ultrafast Dynamics of Chemical Systems

Download or read book Ultrafast Dynamics of Chemical Systems written by J.D. Simon and published by Springer Science & Business Media. This book was released on 1994-02-28 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents an up-to-date overview of developments in the field of ultrafast reaction dynamics in condensed phases. Thirteen contributions, written by leading experts, report on a variety of chemical phenomena studied by many different experimental and theoretical techniques. Topics discussed include ultrafast spectroscopic techniques; aspects of electron transfer reactions ranging from solvent effects; intermolecular and intramolecular systems, to dynamics at semiconductor surfaces; the dynamics of chemical systems using Raman spectroscopy; pericyclic photochemical rearrangements and photodissociation reactions; solvent--solute interaction dynamics; and chemical dynamics in clusters. Theoretical treatments of impulsive femtosecond pump-probe spectroscopy, solvation dynamics and electron transfer are presented. The field of ultrafast chemistry is growing rapidly. The works described in this volume provide an overview of many of the exciting areas currently under study. For researchers interested in up-to-date theoretical and experimental developments in ultrafast spectroscopy in chemical systems.

Book Chemistry in Action  Making Molecular Movies with Ultrafast Electron Diffraction and Data Science

Download or read book Chemistry in Action Making Molecular Movies with Ultrafast Electron Diffraction and Data Science written by Lai Chung Liu and published by Springer Nature. This book was released on 2020-09-10 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: The thesis provides the necessary experimental and analytical tools to unambiguously observe the atomically resolved chemical reactions. A great challenge of modern science has been to directly observe atomic motions during structural transitions, and while this was first achieved through a major advance in electron source brightness, the information content was still limited and new methods for image reconstruction using femtosecond electron diffraction methods were needed. One particular challenge lay in reconciling the innumerable possible nuclear configurations with the observation of chemical reaction mechanisms that reproducibly give the same kind of chemistry for large classes of molecules. The author shows that there is a simple solution that occurs during barrier crossing in which the highly anharmonic potential at that point in nuclear rearrangements couples high- and low-frequency vibrational modes to give highly localized nuclear motions, reducing hundreds of potential degrees of freedom to just a few key modes. Specific examples are given in this thesis, including two photoinduced phase transitions in an organic system, a ring closure reaction, and two direct observations of nuclear reorganization driven by spin transitions. The emerging field of structural dynamics promises to change the way we think about the physics of chemistry and this thesis provides tools to make it happen.

Book Ultrafast Electronic and Structural Dynamics

Download or read book Ultrafast Electronic and Structural Dynamics written by Kiyoshi Ueda and published by Springer. This book was released on 2024-08-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates advanced technologies for imaging electrons and atoms in action in various forms of matter, from atoms and diatoms to protein molecules and condensed matter. The technologies that are described employ ultrafast pulsed lasers, X-ray free electron lasers, and pulsed electron guns, with pulse durations from femtoseconds, suitable to visualize atoms in action, to attoseconds, needed to visualize ballistic electron motion. Advanced theories, indispensable for understanding such ultrafast imaging and spectroscopy data on electrons and atoms in action, are also described. The book consists of three parts. The first part describes probing methods of attosecond electron dynamics in atoms, molecules, liquids, and solids. The second part describes femtosecond structural dynamics and coupling of structural change and electron motion in molecules and solids The last part is dedicated to ultrafast photophysical processes and chemical reactions of protein molecules responsible for biological functions.

Book Femtosecond Dynamics in Liquids  Solvated Electrons and Small Molecule Systems

Download or read book Femtosecond Dynamics in Liquids Solvated Electrons and Small Molecule Systems written by Erik Peter Farr and published by . This book was released on 2018 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is broadly concerned with understanding the structural and energetic details of condensed phase chemistry, primarily on ultrafast timescales. The first chapter focuses on novel contributions regarding the nature of the hydrated electron. It has been thought that this quasi-free solvent-supported electron resided in a cavity by its repulsive Coulombic interactions with nearby water molecules. Instead, a relatively modern but controversial simulation of the hydrated electron has shown that many observables are in fact better described by a non-cavity structure in which the hydrated electron's wave function resides in the interstitial spaces between water that is at, or slightly above, bulk density near and within the electron. The novel contributions have been understanding the effects of temperature on the structure and dynamics of the hydrated electron. This newly observed experimental temperature dependence of dynamics is highly consistent with the new non-cavity model of the hydrated electron. Secondarily, we show that previous methods of determining the hydrated electron's first excited-state lifetime from transient absorption were fraught with parameter correlation, making clean identification of the lifetime impossible. To resolve this we employ a more sophisticated model in combination with better signal to noise from broadband transient absorption measurements to show with certainty that the first excited-state lifetime of the hydrated electron at room temperature is on the order of 100 fs---in agreement with recent time-resolved photoelectron experiments. The second chapter brings these concepts of time-resolved spectroscopy to an advanced undergraduate level through a novel laboratory experiment. In order to provide access to undergraduates, I built a low-cost combined transient absorption and time-resolved fluorescence spectrometer. Simultaneously, I developed an experiment limited by the temporal and spectral resolution of the instrument in which undergraduates measure the fluorescent and phosphorescent lifetimes of the dye Eosin B. With these lifetimes in hand, the undergraduates then arrive at a complete photophysical picture for the molecule and quantitatively interpret their results with introductory quantum mechanics for electronic spectroscopy. Finally, the third chapter highlights time-resolved and steady-state spectroscopic investigations of singly linked di-perylenediimide, a key acceptor material used in competitive organic photovoltaics. We show that this molecule exists in a range geometrical configurations at room temperature, and that these conformations are spectrally distinct. Furthermore, the typical approximations used to describe this dimer as a Kasha H-/J-aggregate do not appear reasonable evidenced by detailed deconvolution of underlying spectral components with a high density of states---further confirmed with time-dependent density functional theory. The overarching theme of these chapters is to understand molecular photophysics in condensed phases on ultrafast timescales by using or refining modern principles of physical chemistry.

Book Coherent Lattice and Molecular Dynamics in Ultrafast Single shot Spectroscopy

Download or read book Coherent Lattice and Molecular Dynamics in Ultrafast Single shot Spectroscopy written by Peter Roland Poulin and published by . This book was released on 2005 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the development, refinement, and application of dual- echelon single-shot ultrafast spectroscopy to the study of coherent nuclear motion in condensed phase systems. The general principles of the single-shot method are described, and particular emphasis is given to the general applicability and shortcomings of this technique and the extraction of data from raw laboratory images. Coupled to the single-shot system is a synchronously pumped dual-beam noncollinear optical parametric amplifier which was developed to provide independently tunable pump and probe beams in the visible and UV regions of the electromagnetic spectrum. The second part of the thesis concerns the application of this technique to the study of atomic motions in liquids and solids. Single-shot nonresonant impulsive stimulated Raman scattering (ISRS) measurements in m-iodoanisole and bismuth germanate reveal the existence of transient coherent behavior. High-field resonant excitation of the semimetals bismuth, antimony and tellurium, as well as the semiconductor germanium telluride, reveals dramatic lattice anharmoniticity as a function of pump fluence. Finally, ultrafast photodissociation of the triiodide ion both in solution and in the solid state gives considerable insight regarding the role of the local environment in mediating chemical reaction dynamics.

Book Analysis and Control of Ultrafast Photoinduced Reactions

Download or read book Analysis and Control of Ultrafast Photoinduced Reactions written by Oliver Kuhn and published by Springer. This book was released on 2016-05-01 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical processes in molecules like bond shaking, breaking or making c- monlytakeplaceonatimescalefromthepico-downtothefemtosecondrange. Theadventofequallyfastlasersourcesandreal-timeobservationschemeslike pump-probe spectroscopy has facilitated the direct insight into such processes wheninitiatedbylight. Inparallelthedevelopmentofadvancedcomputational methods treating the dynamics of photoexcited molecular systems allowed a convergence between theoretical description and experimental observation of such ultrafast dynamical processes. Consequently, the idea emerged, not only to analyze, but also to control molecular dynamics in real time by adequately designed light ?elds. Stimulated by theoretical concepts for in'uencing the motion of molecular wave packets by means of simple few-parameter elect- magnetic ?eld sequences, experiments were driven toward a practical reali- tion of arbitrarily shaped laser pulses. This development culminated in the active feedback control of even complex systems. In addition this o'ers the unique possibility not only to determine the outcome of chemical reactions, butalsotoretrievespeci'cinformationaboutthechosendynamicalpathways, that is, to perform analysis by control. This book illustrates a vital research ?eld by covering a broad spectrum of molecular systems with growing complexity while demonstrating at the same time the convergence of experimental and theoretical approaches. After a g- eral introduction in Chapter 1, Chapter 2 starts with small isolated molecules in the unperturbed environment of the gas phase and Chapter 3 proceeds to more complex systems, but still in vacuum. A higher level of complexity is then reached in Chapter 4 where small molecules in a rare gas matrices are discussed serving as prototype examples for condensed phase dynamics.

Book Femtosecond Time Resolved Four Wave Mixing Applied to the Investigation of Excited State Dynamics

Download or read book Femtosecond Time Resolved Four Wave Mixing Applied to the Investigation of Excited State Dynamics written by Vinu Namboodiri and published by . This book was released on 2010 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laser spectroscopy in the frequency domain has, very early, developed into a powerful tool for the analysis of structural properties of molecules. The development of ultrafast lasers added a new dimension to conventional spectroscopy by rendering time resolved measurements possible. The high time resolution offered by picosecond and femtosecond laser pulses enabled the real time observation of extremely fast processes, such as vibrations and rotations of molecules. With pulses of duration about 100 fs, it is now possible to monitor processes such as internal conversion, vibrational relaxation, and many other processes occurring in the excited electronic states which leads to reactive or energy transfer pathways. The work presented in this thesis focuses on the study of molecular dynamics in these excited electronic states using timeresolved four-wave mixing (FWM) techniques. It is demonstrated that, by combining the FWM process with an excitation pulse, it is possible to study molecular dynamics in the excited states of gaseous and condensed phase samples. The advantages of the four-wave mixing technique over the commonly used time-resolved fluorescence and pump-probe techniques are also discussed. The pump-FWM method is applied to simple molecules in the gas phase as well as to complex molecular systems where internal conversion processes dominate the ultrafast dynamics. The thesis also presents preliminary studies on the effect of the surface enhancement effect of the nonlinear optical process coherent anti-Stokes Raman scattering (CARS) in presence of colloidal metal particles.

Book Femtochemistry  Ultrafast Chemical And Physical Processes In Molecular Systems

Download or read book Femtochemistry Ultrafast Chemical And Physical Processes In Molecular Systems written by Majed Chergui and published by World Scientific. This book was released on 1996-04-30 with total page 718 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights the latest experimental and theoretical developments in the field of femtochemistry, with papers describing the physics and chemistry of ultrafast processes in small molecules, complex molecular systems, clusters, biological systems, solids, matrices, liquids and at surfaces and interfaces. The recent developments in frequency-domain studies of femtodynamics are also presented. In addition, the latest achievements in femtosecond control of chemical reactions are presented, together with the newest techniques in real-time probing of reactions such as ultrafast x-ray or electron diffraction. The papers are rich in references giving a clearcut state-of-the-art of the topics being discussed. The book should be a valuable tool to all persons in the field and to young scientists.Contributors include: A H Zewail, J Jortner, V S Letokhov, J Manz, R S Berry, C Wittig, K B Eisenthal, A W Castleman Jr., J T Hynes, W H Gadzuk, R Kosloff, S Mukamel, K R Wilson; G Fleming, D Wiersma, K Yoshihara, V Sundström, A Apkarian, N Scherer, A Myers, R Schinke, J R Huber, R B Gerber, G Gerber and P M Champion.

Book Analysis and Control of Ultrafast Photoinduced Reactions

Download or read book Analysis and Control of Ultrafast Photoinduced Reactions written by Oliver Kühn and published by Springer Science & Business Media. This book was released on 2007-07-05 with total page 854 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes several years of research carried out by a collaboration of many groups on ultrafast photochemical reactions. It emphasizes the analysis and characterization of the nuclear dynamics within molecular systems in various environments induced by optical excitations and the study of the resulting molecular dynamics by further interaction with an optical field.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2007 with total page 854 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Molecular Basics of Liquids and Liquid Based Materials

Download or read book Molecular Basics of Liquids and Liquid Based Materials written by Katsura Nishiyama and published by Springer Nature. This book was released on 2022-01-03 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book sheds light on the molecular aspects of liquids and liquid-based materials such as organic or inorganic liquids, ionic liquids, proteins, biomaterials, and soft materials including gels. The reader discovers how the molecular basics of such systems are connected with their properties, dynamics, and functions. Once the use and application of liquids and liquid-based materials are understood, the book becomes a source of the latest, detailed knowledge of their structures, dynamics, and functions emerging from molecularity. The systems discussed in the book have structural dimensions varying from nanometers to millimeters, thus the precise estimation of structures and dynamics from experimental, theoretical, and simulation methods is of crucial importance. Outlines of the practical knowledge needed in research and development are helpfully included in the book.

Book Advances in Multi photon Processes and Spectroscopy

Download or read book Advances in Multi photon Processes and Spectroscopy written by Sheng Hsien Lin and published by World Scientific. This book was released on 2011 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest developments and issues in both experimental and theoretical studies of multi-photon processes and the spectroscopy of atoms, molecules and nanomaterials in Physics, Chemistry, Biology and Material Science. It is an important addition to an advanced series that contains review papers suitable for both active researchers in these areas and non-experts who wish to enter the field. Special attention is paid to the recent progress of nonlinear photon-matter interactions applied to femtosecond laser induced nonadiabatic molecular alignment, high-order harmonic generation from C60 fullerene plasma, resonant femtosecond stimulated Raman spectroscopy and attosecond pulse generation, as well as near-field optical imaging of noble-metal nanoparticles and photoexcited ultrafast electron transfer in condensed phase.

Book Handbook of Organic Materials for Electronic and Photonic Devices

Download or read book Handbook of Organic Materials for Electronic and Photonic Devices written by Oksana Ostroverkhova and published by Woodhead Publishing. This book was released on 2018-11-30 with total page 911 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Organic Materials for Electronic and Photonic Devices, Second Edition, provides an overview of the materials, mechanisms, characterization techniques, structure-property relationships, and most promising applications of organic materials. This new release includes new content on emerging organic materials, expanded content on the basic physics behind electronic properties, and new chapters on organic photonics. As advances in organic materials design, fabrication, and processing that enabled charge unprecedented carrier mobilities and power conversion efficiencies have made dramatic advances since the first edition, this latest release presents a necessary understanding of the underlying physics that enabled novel material design and improved organic device design. Provides a comprehensive overview of the materials, mechanisms, characterization techniques, and structure property relationships of organic electronic and photonic materials Reviews key applications, including organic solar cells, light-emitting diodes electrochemical cells, sensors, transistors, bioelectronics, and memory devices New content to reflect latest advances in our understanding of underlying physics to enable material design and device fabrication