Download or read book Two Fluid Flows with Or Without Phase Change written by Amitabh Narain and published by . This book was released on 1994 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Thermo fluid Dynamics of Two Phase Flow written by Mamoru Ishii and published by Springer Science & Business Media. This book was released on 2006-09-28 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.
Download or read book Numerical Methods for Fluid Dynamics written by Institute of Mathematics and Its Applications and published by . This book was released on 1982 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Fundamentals of Multiphase Flow written by Christopher E. Brennen and published by Cambridge University Press. This book was released on 2005-04-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Download or read book Thermo Fluid Dynamics of Two Phase Flow written by Mamoru Ishii and published by Springer Science & Business Media. This book was released on 2010-11-10 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermo-fluid Dynamics of Two-Phase Flow, Second Edition is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of particular significance for those working in the field of computational fluid dynamics, new equations and coverage of 1 dimensional drift flux models and a new chapter on porous media formulation.
Download or read book Two phase Flow and Heat Transfer written by David Butterworth and published by . This book was released on 1979 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Transport Phenomena in Multiphase Systems written by Amir Faghri and published by Academic Press. This book was released on 2006 with total page 1072 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors
Download or read book Liquid Vapor Phase Change Phenomena written by Van P. Carey and published by CRC Press. This book was released on 2018-05-02 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Liquid-Vapor Phase-Change Phenomena presents the basic thermophysics and transport principles that underlie the mechanisms of condensation and vaporization processes. The text has been thoroughly updated to reflect recent innovations in research and to strengthen the fundamental focus of the first edition. Starting with an integrated presentation of the nonequilibrium thermodynamics and interfacial phenomena associated with vaporization and condensation, coverage follows of the heat transfer and fluid flow mechanisms in such processes. The second edition includes significant new material on the nanoscale and microscale thermophysics of boiling and condensation phenomena and the use of advanced computational tools to create new models of phase-change events. The importance of basic phenomena to a wide variety of applications is emphasized and illustrated throughout using examples and problems. Suitable for senior undergraduate and first-year graduate students in mechanical or chemical engineering, the book can also be a helpful reference for practicing engineers or scientists studying the fundamental physics of nucleation, boiling and condensation.
Download or read book Fundamentals of Two Fluid Dynamics written by Daniel D. Joseph and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-fluid dynamics is a challenging subject rich in physics and prac tical applications. Many of the most interesting problems are tied to the loss of stability which is realized in preferential positioning and shaping of the interface, so that interfacial stability is a major player in this drama. Typically, solutions of equations governing the dynamics of two fluids are not uniquely determined by the boundary data and different configurations of flow are compatible with the same data. This is one reason why stability studies are important; we need to know which of the possible solutions are stable to predict what might be observed. When we started our studies in the early 1980's, it was not at all evident that stability theory could actu ally work in the hostile environment of pervasive nonuniqueness. We were pleasantly surprised, even astounded, by the extent to which it does work. There are many simple solutions, called basic flows, which are never stable, but we may always compute growth rates and determine the wavelength and frequency of the unstable mode which grows the fastest. This proce dure appears to work well even in deeply nonlinear regimes where linear theory is not strictly valid, just as Lord Rayleigh showed long ago in his calculation of the size of drops resulting from capillary-induced pinch-off of an inviscid jet.
Download or read book Multiphase Fluid Flow in Porous and Fractured Reservoirs written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2015-09-23 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today's reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. - Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs - Explains analytical solutions and approaches as well as applications to modeling verification for today's reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency - Utilize practical codes and programs featured from online companion website
Download or read book Geothermal Well Test Analysis written by Sadiq J. Zarrouk and published by Academic Press. This book was released on 2019-05-16 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geothermal Well Test Analysis: Fundamentals, Applications and Advanced Techniques provides a comprehensive review of the geothermal pressure transient analysis methodology and its similarities and differences with petroleum and groundwater well test analysis. Also discussed are the different tests undertaken in geothermal wells during completion testing, output/production testing, and the interpretation of data. In addition, the book focuses on pressure transient analysis by numerical simulation and inverse methods, also covering the familiar pressure derivative plot. Finally, non-standard geothermal pressure transient behaviors are analyzed and interpreted by numerical techniques for cases beyond the limit of existing analytical techniques. Provides a guide on the analysis of well test data in geothermal wells, including pressure transient analysis, completion testing and output testing Presents practical information on how to avoid common issues with data collection in geothermal wells Uses SI units, converting existing equations and models found in literature to this unit system instead of oilfield units
Download or read book Direct Numerical Simulations of Gas Liquid Multiphase Flows written by Grétar Tryggvason and published by Cambridge University Press. This book was released on 2011-03-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.
Download or read book College Physics for AP Courses written by Irna Lyublinskaya and published by . This book was released on 2015-07-31 with total page 1665 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This introductory, algebra-based, two-semester college physics book is grounded with real-world examples, illustrations, and explanations to help students grasp key, fundamental physics concepts. ... This online, fully editable and customizable title includes learning objectives, concept questions, links to labs and simulations, and ample practice opportunities to solve traditional physics application problems."--Website of book.
Download or read book Numerical Heat Transfer and Fluid Flow written by Suhas Patankar and published by CRC Press. This book was released on 2018-10-08 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.
Download or read book Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks written by Behzad Ghanbarian and published by John Wiley & Sons. This book was released on 2023-04-13 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks Understanding and predicting fluid flow in hydrocarbon shale and other non-conventional reservoir rocks Oil and natural gas reservoirs found in shale and other tight and ultra-tight porous rocks have become increasingly important sources of energy in both North America and East Asia. As a result, extensive research in recent decades has focused on the mechanisms of fluid transfer within these reservoirs, which have complex pore networks at multiple scales. Continued research into these important energy sources requires detailed knowledge of the emerging theoretical and computational developments in this field. Following a multidisciplinary approach that combines engineering, geosciences and rock physics, Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks provides both academic and industrial readers with a thorough grounding in this cutting-edge area of rock geology, combining an explanation of the underlying theories and models with practical applications in the field. Readers will also find: An introduction to the digital modeling of rocks Detailed treatment of digital rock physics, including decline curve analysis and non-Darcy flow Solutions for difficult-to-acquire measurements of key petrophysical characteristics such as shale wettability, effective permeability, stress sensitivity, and sweet spots Physics of Fluid Flow and Transport in Unconventional Reservoir Rocks is a fundamental resource for academic and industrial researchers in hydrocarbon exploration, fluid flow, and rock physics, as well as professionals in related fields.
Download or read book Two Phase Flow Boiling and Condensation written by S. Mostafa Ghiaasiaan and published by Cambridge University Press. This book was released on 2014-08-07 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is an introduction to gas-liquid two-phase flow, boiling and condensation for graduate students, professionals, and researchers in mechanical, nuclear, and chemical engineering. The book provides a balanced coverage of two-phase flow and phase change fundamentals, well-established art and science dealing with conventional systems, and the rapidly developing areas of microchannel flow and heat transfer. It is based on the author's more than 15 years of teaching experience. Instructors teaching multiphase flow have had to rely on a multitude of books and reference materials. This book remedies that problem by covering all the topics that are essential for a graduate first course. Among the important areas that are discussed in the book, and are not adequately covered by virtually all the available textbooks, are: two-phase flow model conservation equations and their numerical solution; condensation with and without noncondensables; and two-phase flow, boiling, and condensation in mini and microchannels.
Download or read book Heat Transfer in Aerospace Applications written by Bengt Sundén and published by Academic Press. This book was released on 2016-10-19 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat Transfer in Aerospace Applications is the first book to provide an overall description of various heat transfer issues of relevance for aerospace applications. The book contains chapters relating to convection cooling, heat pipes, ablation, heat transfer at high velocity, low pressure and microgravity, aircraft heat exchangers, fuel cells, and cryogenic cooling systems. Chapters specific to low density heat transfer (4) and microgravity heat transfer (9) are newer subjects which have not been previously covered. The book takes a basic engineering approach by including correlations and examples that an engineer needs during the initial phases of vehicle design or to quickly analyze and solve a specific problem. Designed for mechanical, chemical, and aerospace engineers in research institutes, companies, and consulting firms, this book is an invaluable resource for the latest on aerospace heat transfer engineering and research. - Provides an overall description of heat transfer issues of relevance for aerospace applications - Discusses why thermal problems arise and introduces the various heat transfer modes - Helps solve the problem of selecting and calculating the cooling system, the heat exchanger, and heat protection - Features a collection of problems in which the methods presented in the book can be used to solve these problems