Download or read book Numerical Simulation of Submicron Semiconductor Devices written by Kazutaka Tomizawa and published by Artech House on Demand. This book was released on 1993-01-01 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the basic theory of carrier transport, develops numerical algorithms used for transport problems or device simulations, and presents real-world examples of implementation.
Download or read book Analysis and Simulation of Semiconductor Devices written by S. Selberherr and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the single transistor, which is the major prerequisite for VLSI, nearly led to a breakdown of the classical models of semiconductor devices.
- Author : Kaj J. Grahn
- Publisher :
- Release : 1993
- ISBN : 9789516664012
- Pages : 84 pages
Two dimensional numerical modeling of advanced semiconductor devices from the physical point of view
Download or read book Two dimensional numerical modeling of advanced semiconductor devices from the physical point of view written by Kaj J. Grahn and published by . This book was released on 1993 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Semiconductor Device Physics and Simulation written by J.S. Yuan and published by Springer Science & Business Media. This book was released on 2013-11-22 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.
Download or read book Simulation of Semiconductor Devices and Processes written by Siegfried Selberherr and published by Springer. This book was released on 1993 with total page 532 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Simulation of Semiconductor Devices and Processes written by Heiner Ryssel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: SISDEP ’95 provides an international forum for the presentation of state-of-the-art research and development results in the area of numerical process and device simulation. Continuously shrinking device dimensions, the use of new materials, and advanced processing steps in the manufacturing of semiconductor devices require new and improved software. The trend towards increasing complexity in structures and process technology demands advanced models describing all basic effects and sophisticated two and three dimensional tools for almost arbitrarily designed geometries. The book contains the latest results obtained by scientists from more than 20 countries on process simulation and modeling, simulation of process equipment, device modeling and simulation of novel devices, power semiconductors, and sensors, on device simulation and parameter extraction for circuit models, practical application of simulation, numerical methods, and software.
Download or read book Numerical Simulation of Semiconductor Devices written by Sumantri Slamet and published by . This book was released on 1981 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Semiconductor Devices written by Kevin M. Kramer and published by Prentice Hall. This book was released on 1997 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: CD-ROM contains: "Win32 version of SGFramework and the simulations contains in the book."
Download or read book Introduction to Semiconductor Device Modelling written by Christopher M. Snowden and published by World Scientific. This book was released on 1998 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals mainly with physical device models which are developed from the carrier transport physics and device geometry considerations. The text concentrates on silicon and gallium arsenide devices and includes models of silicon bipolar junction transistors, junction field effect transistors (JFETs), MESFETs, silicon and GaAs MESFETs, transferred electron devices, pn junction diodes and Schottky varactor diodes. The modelling techniques of more recent devices such as the heterojunction bipolar transistors (HBT) and the high electron mobility transistors are discussed. This book contains details of models for both equilibrium and non-equilibrium transport conditions. The modelling Technique of Small-scale devices is discussed and techniques applicable to submicron-dimensioned devices are included. A section on modern quantum transport analysis techniques is included. Details of essential numerical schemes are given and a variety of device models are used to illustrate the application of these techniques in various fields.
Download or read book Compound Semiconductor Device Modelling written by Christopher M. Snowden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at microwave, millimetre and optical frequencies. The apparent complexity of equivalent circuit and physics-based models distinguishes high frequency devices from their low frequency counterparts . . Over the past twenty years a wide range of modelling techniques have emerged suitable for describing the operation of compound semiconductor devices. This book brings together for the first time the most popular techniques in everyday use by engineers and scientists. The book specifically addresses the requirements and techniques suitable for modelling GaAs, InP. ternary and quaternary semiconductor devices found in modern technology.
Download or read book Power Semiconductor Devices and Circuits written by A.A. Jaecklin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: This symposium was the sCientific-technical event of the centennial celebration of the Asea Brown Boveri Switzerland. The purpose was to assess the present state of the art as well as shaping the basis for future progress in the area of power devices and related power circuits. The merger of Brown Boveri (BBC) with Asea to Asea Brown Boveri (ABB) three years ago gave new stimulus and enriched the technical substance of the symposium. By 1991, 100 years after the formation of BBC in Switzerland as a single company, this organization has been decentralized, forming 35 independent ABB companies. One of them - ABB Semiconductors Ltd. - directly deals with the power semiconductor business. These significant changes reflect the changes in the market place: increased competition and higher customer expectations have to be fulfilled. In line with the core business activities of ABB and with the concept of sustainable development, it is natural for ABB to be active in the area of power devices and circuits. Increased awareness towards energy conservation is one of the main drives for these activities. User friendliness is another drive: integration of intelligent functions, e.g. protection and/or increased direct computer interfacing of the power circuits. Therefore, also the R&D activities related to the subject of thIs symposium will in the future be characterized by an even stronger coupling with the market needs. For the members of the R&D Laboratories this means improved customer partnership beyond operational excellence.
Download or read book Technology Computer Aided Design written by Chandan Kumar Sarkar and published by CRC Press. This book was released on 2018-09-03 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Responding to recent developments and a growing VLSI circuit manufacturing market, Technology Computer Aided Design: Simulation for VLSI MOSFET examines advanced MOSFET processes and devices through TCAD numerical simulations. The book provides a balanced summary of TCAD and MOSFET basic concepts, equations, physics, and new technologies related to TCAD and MOSFET. A firm grasp of these concepts allows for the design of better models, thus streamlining the design process, saving time and money. This book places emphasis on the importance of modeling and simulations of VLSI MOS transistors and TCAD software. Providing background concepts involved in the TCAD simulation of MOSFET devices, it presents concepts in a simplified manner, frequently using comparisons to everyday-life experiences. The book then explains concepts in depth, with required mathematics and program code. This book also details the classical semiconductor physics for understanding the principle of operations for VLSI MOS transistors, illustrates recent developments in the area of MOSFET and other electronic devices, and analyzes the evolution of the role of modeling and simulation of MOSFET. It also provides exposure to the two most commercially popular TCAD simulation tools Silvaco and Sentaurus. • Emphasizes the need for TCAD simulation to be included within VLSI design flow for nano-scale integrated circuits • Introduces the advantages of TCAD simulations for device and process technology characterization • Presents the fundamental physics and mathematics incorporated in the TCAD tools • Includes popular commercial TCAD simulation tools (Silvaco and Sentaurus) • Provides characterization of performances of VLSI MOSFETs through TCAD tools • Offers familiarization to compact modeling for VLSI circuit simulation R&D cost and time for electronic product development is drastically reduced by taking advantage of TCAD tools, making it indispensable for modern VLSI device technologies. They provide a means to characterize the MOS transistors and improve the VLSI circuit simulation procedure. The comprehensive information and systematic approach to design, characterization, fabrication, and computation of VLSI MOS transistor through TCAD tools presented in this book provides a thorough foundation for the development of models that simplify the design verification process and make it cost effective.
Download or read book Semiconductors written by W.M. Jr. Coughran and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications SEMICONDUCTORS, PART II is based on the proceedings of the IMA summer program "Semiconductors." Our goal was to foster interaction in this interdisciplinary field which involves electrical engineers, computer scientists, semiconductor physicists and mathematicians, from both university and industry. In particular, the program was meant to encourage the participation of numerical and mathematical analysts with backgrounds in ordinary and partial differential equations, to help get them involved in the mathematical as pects of semiconductor models and circuits. We are grateful to W.M. Coughran, Jr., Julian Cole, Peter Lloyd, and Jacob White for helping Farouk Odeh organize this activity and trust that the proceedings will provide a fitting memorial to Farouk. We also take this opportunity to thank those agencies whose financial support made the program possible: the Air Force Office of Scientific Research, the Army Research Office, the National Science Foundation, and the Office of Naval Research. A vner Friedman Willard Miller, J r. Preface to Part II Semiconductor and integrated-circuit modeling are an important part of the high technology "chip" industry, whose high-performance, low-cost microprocessors and high-density memory designs form the basis for supercomputers, engineering work stations, laptop computers, and other modern information appliances. There are a variety of differential equation problems that must be solved to facilitate such mod eling.
Download or read book Analysis and Design of MOSFETs written by Juin Jei Liou and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction is the first book devoted entirely to a broad spectrum of analysis and design issues related to the semiconductor device called metal-oxide semiconductor field-effect transistor (MOSFET). These issues include MOSFET device physics, modeling, numerical simulation, and parameter extraction. The discussion of the application of device simulation to the extraction of MOSFET parameters, such as the threshold voltage, effective channel lengths, and series resistances, is of particular interest to all readers and provides a valuable learning and reference tool for students, researchers and engineers. Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction, extensively referenced, and containing more than 180 illustrations, is an innovative and integral new book on MOSFETs design technology.
Download or read book 3 Dimensional Process Simulation written by J. Lorenz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Whereas two-dimensional semiconductor process simulation has achieved a certain degree of maturity, three-dimensional process simulation is a newly emerging field in which most efforts are dedicated to necessary basic developments. Research in this area is promoted by the growing demand to obtain reliable information on device geometries and dopant distributions needed for three-dimensional device simulation, and challenged by the great algorithmic problems caused by moving interfaces and by the requirement to limit computation times and memory requirements. A workshop (Erlangen, September 5, 1995) provided a forum to discuss the industrial needs, technical problems, and solutions being developed in the field of three-dimensional semiconductor process simulation. Invited presentations from leading semiconductor companies and research Centers of Excellence from Japan, the USA, and Europe outlined novel numerical algorithms, physical models, and applications in this rapidly emerging field.
Download or read book Challenges to The Second Law of Thermodynamics written by Vladislav Capek and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advance of scienti?c thought in ways resembles biological and geologic transformation: long periods of gradual change punctuated by episodes of radical upheaval. Twentieth century physics witnessed at least three major shifts — relativity, quantum mechanics and chaos theory — as well many lesser ones. Now, st early in the 21 , another shift appears imminent, this one involving the second law of thermodynamics. Over the last 20 years the absolute status of the second law has come under increased scrutiny, more than during any other period its 180-year history. Since the early 1980’s, roughly 50 papers representing over 20 challenges have appeared in the refereed scienti?c literature. In July 2002, the ?rst conference on its status was convened at the University of San Diego, attended by 120 researchers from 25 countries (QLSL2002) [1]. In 2003, the second edition of Le?’s and Rex’s classic anthology on Maxwell demons appeared [2], further raising interest in this emerging ?eld. In 2004, the mainstream scienti?c journal Entropy published a special edition devoted to second law challenges [3]. And, in July 2004, an echo of QLSL2002 was held in Prague, Czech Republic [4]. Modern second law challenges began in the early 1980’s with the theoretical proposals of Gordon and Denur. Starting in the mid-1990’s, several proposals for experimentally testable challenges were advanced by Sheehan, et al. By the late 1990’s and early 2000’s, a rapid succession of theoretical quantum mechanical ? challenges were being advanced by C ́ apek, et al.
Download or read book Introduction to Simulations of Semiconductor Lasers written by Marek Wartak and published by CRC Press. This book was released on 2024-03-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulations play an increasingly important role not only in scientific research but also in engineering developments. Introduction to Simulations of Semiconductor Lasers introduces senior undergraduates to the design of semiconductor lasers and their simulations. The book begins with explaining the physics and fundamental characteristics behind semiconductor lasers and their applications. It presumes little prior knowledge, such that only a familiarity with the basics of electromagnetism and quantum mechanics is required. The book transitions from textbook explanations, equations, and formulas to ready-to-run numeric codes that enable the visualization of concepts and simulation studies. Multiple chapters are supported by MATLAB code which can be accessed by the students. These are ready-to-run, but they can be modified to simulate other structures if desired. Providing a unified treatment of the fundamental principles and physics of semiconductors and semiconductor lasers, Introduction to Simulations of Semiconductor Lasers is an accessible, practical guide for advanced undergraduate students of Physics, particularly for courses in laser physics. Key Features: A unified treatment of fundamental principles Explanations of the fundamental physics of semiconductor Explanations of the operation of semiconductor lasers An historical overview of the subject