EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Two Complementary Strategies for New Physics Searches at Lepton Colliders

Download or read book Two Complementary Strategies for New Physics Searches at Lepton Colliders written by Benjamin Henry Hooberman and published by . This book was released on 2009 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Two Complementary Strategies for New Physics Searches at Lepton Colliders

Download or read book Two Complementary Strategies for New Physics Searches at Lepton Colliders written by and published by . This book was released on 2009 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis I present two complementary strategies for probing beyond-the-Standard Model physics using data collected in ee− collisions at lepton colliders. One strategy involves searching for effects at low energy mediated by new particles at the TeV mass scale, at which new physics is expected to manifest. Several new physics scenarios, including Supersymmetry and models with leptoquarks or compositeness, may lead to observable rates for charged lepton-flavor violating processes, which are forbidden in the Standard Model. I present a search for lepton-flavor violating decays of the [Upsilon](3S) using data collected with the BABAR detector. This study establishes the 90% confidence level upper limits BF([Upsilon](3S) 2!e[tau])

Book Searches for New Physics at Colliders

Download or read book Searches for New Physics at Colliders written by My Phuong Thi Le and published by Stanford University. This book was released on 2011 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: The turning-on of the Large Hadron Collider is the momentous milestone in our quest for new physics beyond the Standard Model. Soon, we will be presented with the task of detecting, identifying, and studying the possibly large parameter space of the underlying model. In this thesis, we will look at some possible extensions to the SM, their signatures at colliders, and possible search strategies to explore the new physics in a model-independent way. In chapter 2, we study the extended neutral gauge sector of the Littlest Higgs model at the 500 GeV e+e- collider using the fermion pair production and Higgs associate production channel. We find that these channels can provide an accurate determination of the fundamental parameters and thus allows the verification of the little Higgs mechanism designed to cancel the Higgs mass quadratic divergence. In chapter 3, we study the ATLAS supersymmetry searches proposed for the 14 TeV pp collider using the $\sim$ 70k models of the phenomenological Minimal Supersymmetric Model (pMSSM) moldel set, that have survived many theoretical and experimental constraints. Since pMSSM does not make any simplifying assumptions about its SUSY-breaking mechanism at high scale, this encompasses a broad class of Supersymmetric models. We find that even though these searches were optimized mostly for mSUGRA signals, they are relatively robust in observing the more general pMSSM models. For the case of models in which squarks and gluinos have mass below 1 TeV, essentially all of these models ($> 99\%$) were observable in at least one of these searches, with 1 $fb^{-1}$ of integrated luminosity allowing for an uncertainty of 50\% in the SM background. We found that 0-lepton searches are the most powerful searches, while searches with 1-2 leptons do not have coverage as good as has been shown for mSUGRA. We then study possible reasons why a model could not be observed. These difficult models mostly include those with long-lived charginos which lead to small Missing Tranverse Energy (MET) and models with squeezed spectra which lead to soft jets that fail the jet cuts. In chapter 4, we study similar searches that have been carried out by ATLAS at the 7 TeV LHC. We found that systematic uncertainty again plays an important role in determining the coverage of the searches. This is especially true for searches with a large SM background, such as $n$-jet 0 lepton searches. We study the implication of a null result from the 7 TeV LHC. We find that the degree of fine-tuning in the pMSSM depends on the prior in which we scan our 19-dimensional space, but overall it is not as large as in mSUGRA. We find that a null result at the 7 TeV with $10 fb^{-1}$ and 20\% systematic errors would imply a need for a higher energy e+e- machine than the 500 GeV ILC to study Supersymmetry. Continuing on along the line of Supersymmetry, in chapter 5 we explore the possibility of adding one more generation to the MSSM (4GMSSM). We find that the CP-odd A boson can be very light due to the contribution of the heavy 4th generation fermion loops while all other Higgs particles (including the CP-even {\it h}) are all quite heavy. The parameter $tan(\beta)$ is strongly constrained to be between 0.5 and 2 due to perturbativity requirements on Yukawa couplings. We study the electroweak constraints as well as collider signatures on the possibility of a light A of mass $\sim$115 GeV. As for an LHC discovery, we find that this light A can be seen in the standard 2-photon Higgs search channel with cross-section more than an order of magnitude greater than that of the SM Higgs. In the last two chapters, we study possible search strategies to explore the new physics in a model-independent way. In chapter 6, we attempt to show how one could be largely agnostic about the underlying model in exploring the complete kinematically-allowed parameter space of pair-produced color octet particles (with mass $m_{\tilde{g}}$) that each directly decay into two jets plus a neutral stable particle (with mass $m_{\tilde{B}}$) that would escape the detectors and appear as MET. The kinematics of this process can be completely described by two parameters $m_{\tilde {g}}$ and $m_{\tilde {B}}$ , and in particular their splitting determines the softness or hardness of jets from the decay products. In order to cover the whole parameter space, one would need separate searches for different regions. We show that optimizing the final cuts for every ($m_{\tilde {g}}$, $m_{\tilde {B}}$) point, and combining all searches, can extend the coverage significantly. Since this is just based on the kinematics of the decay, this result can be easily interpreted for any model with this decay topology. In chapter 7, we carry this model-independent approach further in jets plus missing energy searches, by proposing that one should bin the measured data (or simulated SM background) differentially in MET and $H_T$ (scalar sum of invisible energy) for each search, and use them to set limits on any model of interest. We demonstrate this technique by carrying out a search similar to that studied in chapter 6, with one added decay step for the color octet particle, mainly it decays to 2 jets and another particle (with mass $m_{\tilde {W}}$) and it in turn decays to the neutral stable particle and 2 jets. We study different kinematic regions and set bounds in this 3-dimensional parameter space ($m_{\tilde {g}}$, $m_{\tilde {W}}$, $m_{\tilde {B}}$).

Book Searches for New Physics at Colliders

Download or read book Searches for New Physics at Colliders written by My Phuong Thi Le and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The turning-on of the Large Hadron Collider is the momentous milestone in our quest for new physics beyond the Standard Model. Soon, we will be presented with the task of detecting, identifying, and studying the possibly large parameter space of the underlying model. In this thesis, we will look at some possible extensions to the SM, their signatures at colliders, and possible search strategies to explore the new physics in a model-independent way. In chapter 2, we study the extended neutral gauge sector of the Littlest Higgs model at the 500 GeV e+e- collider using the fermion pair production and Higgs associate production channel. We find that these channels can provide an accurate determination of the fundamental parameters and thus allows the verification of the little Higgs mechanism designed to cancel the Higgs mass quadratic divergence. In chapter 3, we study the ATLAS supersymmetry searches proposed for the 14 TeV pp collider using the $\sim$ 70k models of the phenomenological Minimal Supersymmetric Model (pMSSM) moldel set, that have survived many theoretical and experimental constraints. Since pMSSM does not make any simplifying assumptions about its SUSY-breaking mechanism at high scale, this encompasses a broad class of Supersymmetric models. We find that even though these searches were optimized mostly for mSUGRA signals, they are relatively robust in observing the more general pMSSM models. For the case of models in which squarks and gluinos have mass below 1 TeV, essentially all of these models ($> 99\%$) were observable in at least one of these searches, with 1 $fb^{-1}$ of integrated luminosity allowing for an uncertainty of 50\% in the SM background. We found that 0-lepton searches are the most powerful searches, while searches with 1-2 leptons do not have coverage as good as has been shown for mSUGRA. We then study possible reasons why a model could not be observed. These difficult models mostly include those with long-lived charginos which lead to small Missing Tranverse Energy (MET) and models with squeezed spectra which lead to soft jets that fail the jet cuts. In chapter 4, we study similar searches that have been carried out by ATLAS at the 7 TeV LHC. We found that systematic uncertainty again plays an important role in determining the coverage of the searches. This is especially true for searches with a large SM background, such as $n$-jet 0 lepton searches. We study the implication of a null result from the 7 TeV LHC. We find that the degree of fine-tuning in the pMSSM depends on the prior in which we scan our 19-dimensional space, but overall it is not as large as in mSUGRA. We find that a null result at the 7 TeV with $10 fb^{-1}$ and 20\% systematic errors would imply a need for a higher energy e+e- machine than the 500 GeV ILC to study Supersymmetry. Continuing on along the line of Supersymmetry, in chapter 5 we explore the possibility of adding one more generation to the MSSM (4GMSSM). We find that the CP-odd A boson can be very light due to the contribution of the heavy 4th generation fermion loops while all other Higgs particles (including the CP-even {\it h}) are all quite heavy. The parameter $tan(\beta)$ is strongly constrained to be between 0.5 and 2 due to perturbativity requirements on Yukawa couplings. We study the electroweak constraints as well as collider signatures on the possibility of a light A of mass $\sim$115 GeV. As for an LHC discovery, we find that this light A can be seen in the standard 2-photon Higgs search channel with cross-section more than an order of magnitude greater than that of the SM Higgs. In the last two chapters, we study possible search strategies to explore the new physics in a model-independent way. In chapter 6, we attempt to show how one could be largely agnostic about the underlying model in exploring the complete kinematically-allowed parameter space of pair-produced color octet particles (with mass $m_{\tilde{g}}$) that each directly decay into two jets plus a neutral stable particle (with mass $m_{\tilde{B}}$) that would escape the detectors and appear as MET. The kinematics of this process can be completely described by two parameters $m_{\tilde {g}}$ and $m_{\tilde {B}}$, and in particular their splitting determines the softness or hardness of jets from the decay products. In order to cover the whole parameter space, one would need separate searches for different regions. We show that optimizing the final cuts for every ($m_{\tilde {g}}$, $m_{\tilde {B}}$) point, and combining all searches, can extend the coverage significantly. Since this is just based on the kinematics of the decay, this result can be easily interpreted for any model with this decay topology. In chapter 7, we carry this model-independent approach further in jets plus missing energy searches, by proposing that one should bin the measured data (or simulated SM background) differentially in MET and $H_T$ (scalar sum of invisible energy) for each search, and use them to set limits on any model of interest. We demonstrate this technique by carrying out a search similar to that studied in chapter 6, with one added decay step for the color octet particle, mainly it decays to 2 jets and another particle (with mass $m_{\tilde {W}}$) and it in turn decays to the neutral stable particle and 2 jets. We study different kinematic regions and set bounds in this 3-dimensional parameter space ($m_{\tilde {g}}$, $m_{\tilde {W}}$, $m_{\tilde {B}}$).

Book Inclusive Search Strategies and Bottom up Approaches for New Physics at Colliders

Download or read book Inclusive Search Strategies and Bottom up Approaches for New Physics at Colliders written by Sonia El Hedri and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The first run of the Large Hadron Collider (LHC) has strongly challenged our view of new physics by tightly constraining the most investigated scenarios such as super- symmetry. If new physics is within the reach of future experiments, discovering it will require devising new data analysis techniques and considering new approaches to open issues such as the fine-tuning problem. This thesis discusses how to elaborate new search strategies using signature-based --bottom-up-- approaches. It focuses in particular on multijet LHC signatures, the fine-tuning problem, dark matter detection and explaining non-standards Higgs couplings.

Book Higgs Boson Decays into a Pair of Bottom Quarks

Download or read book Higgs Boson Decays into a Pair of Bottom Quarks written by Cecilia Tosciri and published by Springer Nature. This book was released on 2021-10-22 with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: The discovery in 2012 of the Higgs boson at the Large Hadron Collider (LHC) represents a milestone for the Standard Model (SM) of particle physics. Most of the SM Higgs production and decay rates have been measured at the LHC with increased precision. However, despite its experimental success, the SM is known to be only an effective manifestation of a more fundamental description of nature. The scientific research at the LHC is strongly focused on extending the SM by searching, directly or indirectly, for indications of New Physics. The extensive physics program requires increasingly advanced computational and algorithmic techniques. In the last decades, Machine Learning (ML) methods have made a prominent appearance in the field of particle physics, and promise to address many challenges faced by the LHC. This thesis presents the analysis that led to the observation of the SM Higgs boson decay into pairs of bottom quarks. The analysis exploits the production of a Higgs boson associated with a vector boson whose signatures enable efficient triggering and powerful background reduction. The main strategy to maximise the signal sensitivity is based on a multivariate approach. The analysis is performed on a dataset corresponding to a luminosity of 79.8/fb collected by the ATLAS experiment during Run-2 at a centre-of-mass energy of 13 TeV. An excess of events over the expected background is found with an observed (expected) significance of 4.9 (4.3) standard deviation. A combination with results from other \Hbb searches provides an observed (expected) significance of 5.4 (5.5). The corresponding ratio between the signal yield and the SM expectation is 1.01 +- 0.12 (stat.)+ 0.16-0.15(syst.). The 'observation' analysis was further extended to provide a finer interpretation of the V H(H → bb) signal measurement. The cross sections for the VH production times the H → bb branching ratio have been measured in exclusive regions of phase space. These measurements are used to search for possible deviations from the SM with an effective field theory approach, based on anomalous couplings of the Higgs boson. The results of the cross-section measurements, as well as the constraining of the operators that affect the couplings of the Higgs boson to the vector boson and the bottom quarks, have been documented and discussed in this thesis. This thesis also describes a novel technique for the fast simulation of the forward calorimeter response, based on similarity search methods. Such techniques constitute a branch of ML and include clustering and indexing methods that enable quick and efficient searches for vectors similar to each other. The new simulation approach provides optimal results in terms of detector resolution response and reduces the computational requirements of a standard particles simulation.

Book The Physics Associated with Neutrino Masses

Download or read book The Physics Associated with Neutrino Masses written by Diego Aristizabal Sierra and published by Frontiers Media SA. This book was released on 2020-01-13 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

Book Search for New Physics at the Tevatron

Download or read book Search for New Physics at the Tevatron written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We report on selected recent results from the CDF and D0 experiments on searches for physics beyond the Standard Model using data from the Tevatron collider running p{bar p} collisions at √s = 1960 GeV. Over the past decades the Standard Model (SM) of particle physics has been surprisingly successful. Although the precision of experimental tests improved by orders of magnitude no significant deviation from the SM predictions has been observed so far. Still, there are many questions that the Standard Model does not answer and problems it can not solve. Among the most important ones are the origin of the electro-weak symmetry breaking, hierarchy of scales, unification of fundamental forces and the nature of gravity. Recent cosmological observations indicates that the SM particles only account for 4% of the matter of the Universe. Many extensions of the SM (Beyond the Standard Model, BSM) have been proposed to make the theory more complete and solve some of the above puzzles. Some of these extension includes SuperSymmetry (SUSY), Grand Unification Theory (GUT) and Extra Dimensions. At CDF and D0 we search for evidence of such processes in proton-antiproton collisions at √(s) = 1960 GeV. The phenomenology of these models is very rich, although the cross sections for most of these exotic processes is often very small compared to those of SM processes at hadron colliders. It is then necessary to devise analysis strategies that would allow to disentangle the small interesting signals, often buried under heavy instrumental and/or physics background. Two main approaches to search for physics beyond the Standard Model are used in a complementary fashion: model-based analyses and signature based studies. In the more traditional model-driven approach, one picks a favorite theoretical model and/or a process, and the best signature is chosen. The selection cuts are optimized based on acceptance studies performed using simulated signal events. The expected background is calculated from data and/or Monte Carlo and, based on the number of events observed in the data, a discovery is made or the best limit on the new signal is set. In a signature-based approach a specific signature is picked (i.e. dileptons+X) and the data sample is defined in terms of known SM processes. A signal region (blind box) might be defined with cuts which are kept as loose as possible and the background predictions in the signal region are often extrapolated from control regions. Inconsistencies with the SM predictions will provide indication of possible new physics. As the cuts and acceptances are often calculated independently from a model, different models can be tested against the data sample. It should be noticed that the comparison with a specific model implies calculating optimized acceptances for a specific BSM signal. In signature-based searches, there is no such an optimization. Both the experiments have followed a somehow natural approach in pursuing analysis looking at final state signatures characterized by relatively simple physics objects (for example lepton-only final state, where the selection of the leptons is straightforward and can be easily checked with the measurement of electroweak boson production cross sections) and proceeding onto more complex final state, including jets and heavy flavor. Here more sophisticated identification techniques need to be used and issues like jet energy scale calibration play an important role in determining the final result. Given the limited space available for this proceeding, we will focus here on few selected results.

Book New Physics Searches with an Optical Dump at LUXE

Download or read book New Physics Searches with an Optical Dump at LUXE written by Zhaoyu Bai and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: We propose a novel way to search for feebly interacting massive particles, exploiting two properties of systems involving collisions between high energy electrons and intense laser pulses. The first property is that the electron-laser collision results in a large flux of hard photons, as the laser behaves effectively as a thick medium. The second property is that the emitted photons free-stream inside the laser and thus for them the laser behaves effectively as a very thin medium. Combining these two features implies that the electron-intense-laser collision is an apparatus, which can efficiently convert O ( 10 GeV ) electrons to a large flux of hard, collinear photons. The photons are directed onto a solid dump in which feebly interacting massive particles may be produced. With the much smaller backgrounds induced by the photon beam compared to those expected in electron- or proton-beam dump experiments and combined with a relatively shorter dump used here, the sensitivity to short lifetimes is unparalleled. We denote this novel apparatus as "optical dump" or NPOD (new physics search with optical dump). The proposed LUXE experiment at the European XFEL has all the basic required ingredients to realize this experimental concept for the first time. Moreover, the NPOD extension of LUXE is essentially parasitic to the main experiment and thus, practically it does not have any bearing on its main program. We discuss how the NPOD concept can be realized in practice by adding a detector after the last physical dump of the experiment to reconstruct the two-photon decay of a new spin-0 particle. We show that even with a relatively short dump, the search can still be background-free. Remarkably, even with a few days of data taking with a 40 TW laser corresponding to its initial run, LUXE-NPOD will be able to probe an uncharted territory of models with pseudoscalars and scalars. Furthermore, with a 350 TW laser of the main run, LUXE-NPOD will have a unique reach for these models. In particular it can probe natural scalar theories for masses above 100 MeV. We note that the new NPOD concept may be ported to other existing or future facilities worldwide, including, e.g., future lepton colliders

Book Aspects of Dark Matter and Higgs Phenomenology

Download or read book Aspects of Dark Matter and Higgs Phenomenology written by Ralph Angelus Edezhath and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The existence of dark matter and the hierarchy problem motivates the search for new physics. The formulation of new search strategies and models is crucial in the hunt for physics beyond the Standard Model, and in this work we present three studies of new physics relevant for current and upcoming experiments. First, we study models that contain a singlet dark matter particle with cubic renormalizable couplings between standard model particles and `partner' particles with the same gauge quantum numbers as the standard model quark. The dark matter has spin 0, 1/2, or 1, and may or may not be its own antiparticle. Each model has 3 parameters: the masses of the dark matter and standard model partners, and the cubic coupling. Requiring the correct relic abundance gives a 2-dimensional parameter space where collider and direct detection constraints can be directly compared. We find that collider and direct detection searches are remarkably complementary for these models. Direct detection limits for the cases where the dark matter is not its own antiparticle require dark matter masses to be in the multi-TeV range, where they are extremely difficult to probe in collider experiments. The models where dark matter is its own antiparticle are strongly constrained by collider searches for monojet and jets + MET signals. These models are constrained by direct detection mainly near the limit where the dark matter and partner masses are nearly degenerate, where collider searches become more difficult. Second, we study the case where the singlet dark matter has trilinear couplings to leptons and a new ``lepton partner'' particle. The most sensitive collider probe is the search for leptons + MET, while the most sensitive direct detection channel is scattering from nuclei arising from loop diagrams. Collider and direct detection searches are highly complementary: colliders give the only meaningful constraint when dark matter is its own antiparticle, while direct detection is generally more sensitive if the dark matter is not its own antiparticle. Third, we study the constraints on new physics from Higgs production through vector boson fusion in the context of an effective field theory that preserves Standard Model gauge symmetries. We find that constraints on dimension-6 operators are significantly improved over those from the VBF signal strength by studying the Higgs transverse momentum distribution. Focusing on the O[subscript]HW operator, we find that boosted VBF decaying to photons yields constraints competitive with boosted WW production in the fully leptonic final state, and calculate projected limits for both at the 14 TeV LHC. The PT cuts required to maximize the reach of VBF searches are substantially softer, making the use of the effective field theory more robust than in the case of WW production which requires very high PT cuts to obtain similar limits.

Book Hadron Collider Physics 2005

    Book Details:
  • Author : Mario Campanelli
  • Publisher : Springer Science & Business Media
  • Release : 2007-08-17
  • ISBN : 3540328416
  • Pages : 360 pages

Download or read book Hadron Collider Physics 2005 written by Mario Campanelli and published by Springer Science & Business Media. This book was released on 2007-08-17 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers the proceedings of The Hadron Collider Physics Symposia (HCP) 2005, and reviews the state-of-the-art in the key physics directions of experimental hadron collider research. Topics include QCD physics, precision electroweak physics, c-, b-, and t-quark physics, physics beyond the Standard Model, and heavy ion physics. The present volume serves as a reference for everyone working in the field of accelerator-based high-energy physics.

Book FUTURE LEPTON COLLIDERS AND LASER ACCELERATION

Download or read book FUTURE LEPTON COLLIDERS AND LASER ACCELERATION written by and published by . This book was released on 2000 with total page 11 pages. Available in PDF, EPUB and Kindle. Book excerpt: Future high energy colliders along with their physics potential, and relationship to new laser technology are discussed. Experimental approaches and requirements for New Physics exploration are also described.

Book Lepton and Photon Interactions at High Energies

Download or read book Lepton and Photon Interactions at High Energies written by Harry W. K. Cheung and published by World Scientific. This book was released on 2004 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains contributions to the XXI International Symposium on Lepton and Photon Interactions at High Energies, held at the Fermi National Accelerator Laboratory. It gives up-to-date reviews of all aspects of particle physics, written by leading practitioners in the field. The review nature of all the articles makes this volume more accessible to students and researchers in other fields of physics. In addition to new experimental data and advances in theory, the future directions and prospects for the field are covered.

Book Searches for New Phenomena Using Events with Three Or More Charged Leptons in  pp  Collisions at   sqrt s

Download or read book Searches for New Phenomena Using Events with Three Or More Charged Leptons in pp Collisions at sqrt s written by David Ren-Hwa Yu and published by . This book was released on 2015 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation presents two searches for phenomena beyond the Standard Model using events with three or more charged leptons. The searches are based on 20.3 fb-1 of proton- proton collision data with a center-of-mass energy of √s = 8 TeV collected by the ATLAS detector at the CERN Large Hadron Collider in 2012. The first is a model-independent search for excesses beyond Standard Model expectations in many signal regions. The events are required to have least three charged leptons, of which at least two are electrons or muons, and at most one is a hadronically decaying [tau] lepton. The selected events are categorized based on the flavor and charge of the leptons, and the signal regions are defined using several kinematic variables sensitive to beyond the Standard Model phenomena. The second search looks for new heavy leptons decaying resonantly to three electrons or muons, two of which are produced through an intermediate Z boson. The resonant decay produces a narrowly- peaked excess in the trilepton mass spectrum. In both cases, no significant excess beyond Standard Model expectations is observed, and the data are used to set limits on models of new physics. The model-independent trilepton search is used to confront a model of doubly charged scalar particles decaying to e[tau] or [mu][tau], excluding masses below 400 GeV at 95% confidence level. The trilepton resonance search is used to test models of vector-like leptons and the type III neutrino seesaw mechanism. The vector-like lepton model is excluded for most of the mass range 114 GeV - 176 GeV, while the type III seesaw model is excluded for most the mass range 100 GeV - 468 GeV. Both searches also present tools to facilitate reinterpretations in the context of other models predicting the production of three or more charged leptons.

Book Strategies for Discovering New Physics at the LHC

Download or read book Strategies for Discovering New Physics at the LHC written by Eder Izaguirre and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Large Hadron collider has recently discovered a particle that has properties similar to the Standard Model Higgs boson. The LHC experiments will continue to collect data to measure the properties of the Higgs-like boson more accurately to determine if it is the Standard Model Higgs. The Higgs-like particle that was observed also suggests that there are new colored states with masses that can be within reach of the Large Hadron Collider. In this thesis, I discuss the idea of simplified models, which seeks to better guide experimental searches for new states beyond the Standard Model, as well as new techniques to improve the sensitivity of current searches for colored particles. Finally, I discuss the implications of the Higgs on searches for new physics at the LHC and other experiments.

Book Preons

    Book Details:
  • Author : Ian A. D'Souza
  • Publisher : World Scientific
  • Release : 1992
  • ISBN : 9789810210199
  • Pages : 130 pages

Download or read book Preons written by Ian A. D'Souza and published by World Scientific. This book was released on 1992 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are a number of unanswered questions which indicate that the Standard Model, successful as it is, cannot be the entire story. One solution to answering these questions is that the Standard Model is an effective low-energy theory of structure hopefully nearby in its energy scale in much the same way that a model of strong interactions among nucleons mediated by pions is an effective theory for the strong interactions of quarks mediated by coloured gluons. This book reviews the Standard Model and then examines the current status of composite models. After developing criteria for judging such models the text discusses two of the major indicators of compositeness, triviality and naturalness. Using this framework as a background the various models are summarized and discussed. This monograph concludes with a chapter describing the constraints imposed on composite models by current measurements of decay rates, magnetic moment measurements, flavour changing processes etc. and describing other ways to look for signatures of compositeness.This monograph attempts to be thorough, covering all aspects of composite models, as found in the literature at the time of completion of the manuscript. As such it should be of interest to any experimental or theoretical physicist having an interest in the subject. The review of the Standard Model in the first chapter is written in such a way that anyone with a basic knowledge of Quantum Field Theory should be able to understand the entire text. As such it could also be used for supplementary reading in graduate courses.

Book Search for New Physics at Colliders

Download or read book Search for New Physics at Colliders written by Giorgio Chiarelli and published by . This book was released on 2005 with total page 12 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper I present the most recent results of the ongoing searches, mainly from Tevatron Collider experiments, for new physics beyond the Standard Model. While no signal has been seen so far, many analyses are reaching the point in which either a discovery will take place or strong limit on currently popular theories will be set.