Download or read book Compressible Turbulent Mixing Proceedings Of Fifth International Workshop written by R Young and published by World Scientific. This book was released on 1996-11-22 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, compressible turbulent mixing is discussed from the viewpoints of experiment, numerical simulation and theoretical models. The major problem areas include Rayleigh-Taylor and Richtmyer-Meshkov instabilities, and multiphase mixing problems. A variety of initial configurations are discussed, including single and multiple mode perturbations and nonlinear geometries in both two and three dimensions. The effects of experimental and numerical artifacts are also considered.
Download or read book The physics of fluid turbulence written by William D. Maccomb and published by . This book was released on 2000 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Coarse Grained Simulation and Turbulent Mixing written by Fenando F. Grinstein and published by Cambridge University Press. This book was released on 2016-06-30 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews our current understanding of the subject. For graduate students and researchers in computational fluid dynamics and turbulence.
Download or read book Advances in Compressible Turbulent Mixing written by and published by . This book was released on 1992 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Hydrodynamic Instabilities and Turbulence written by Ye Zhou and published by Cambridge University Press. This book was released on 2024-05-31 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive reference guide to turbulent mixing driven by Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instabilities.
Download or read book Coarse Grained Simulation and Turbulent Mixing written by Fernando F. Grinstein and published by Cambridge University Press. This book was released on 2016-06-30 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small-scale turbulent flow dynamics is traditionally viewed as universal and as enslaved to that of larger scales. In coarse grained simulation (CGS), large energy-containing structures are resolved, smaller structures are spatially filtered out, and unresolved subgrid scale (SGS) effects are modeled. Coarse Grained Simulation and Turbulent Mixing reviews our understanding of CGS. Beginning with an introduction to the fundamental theory the discussion then moves to the crucial challenges of predictability. Next, it addresses verification and validation, the primary means of assessing accuracy and reliability of numerical simulation. The final part reports on the progress made in addressing difficult non-equilibrium applications of timely current interest involving variable density turbulent mixing. The book will be of fundamental interest to graduate students, research scientists, and professionals involved in the design and analysis of complex turbulent flows.
Download or read book Fundamental Studies of Shock Driven Hydrodynamic Instabilities written by Yu Liang and published by Springer Nature. This book was released on 2022-09-09 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book illustrates the latest progress on the hydrodynamic instabilities induced by a shock wave, particularly RM (Richtmyer–Meshkov) instability. The hydrodynamic instabilities play crucial roles in various industrial and scientific fields, such as inertial confinement fusion, supersonic combustion, supernova explosion, etc. This book experimentally and theoretically explores the shock-driven instabilities of complex gas-gas and gas-liquid interfaces. The main difficulty in performing an experimental study on RM instability, especially in a shock-tube circumstance, lies in creating an idealized initial interface because the RM instability is extremely sensitive to the initial condition. This book introduces new experimental methods to generate shape-controllable two-dimensional gaseous interfaces, thickness-controllable gas layers, and water droplets embedded with a vapour bubble in the shock-tube experiments. It covers the latest experiments and theories on the shock-driven hydrodynamic instabilities of multi-mode, multi-layer, and multi-phase interfaces. It explores the effects of the mode-competition, interface-coupling, and phase-transition on interface evolution, respectively. This book establishes a universal nonlinear theory to predict the RM instability of a shocked multi-mode interface based on spectrum analysis. This book quantifies the effects of interface-coupling and reverberating waves on the hydrodynamic instabilities of a shocked multi-layer interface. This book provides the experimental studies of the interaction of a shock wave and a multi-phase droplet and proposes a modified Rayleigh-Plesset equation to predict the vapour bubble collapse inside a droplet.
Download or read book 31st International Symposium on Shock Waves 1 written by Akihiro Sasoh and published by Springer. This book was released on 2019-03-21 with total page 1188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume of a two volume set which presents the results of the 31st International Symposium on Shock Waves (ISSW31), held in Nagoya, Japan in 2017. It was organized with support from the International Shock Wave Institute (ISWI), Shock Wave Research Society of Japan, School of Engineering of Nagoya University, and other societies, organizations, governments and industry. The ISSW31 focused on the following areas: Blast waves, chemical reacting flows, chemical kinetics, detonation and combustion, ignition, facilities, diagnostics, flow visualization, spectroscopy, numerical methods, shock waves in rarefied flows, shock waves in dense gases, shock waves in liquids, shock waves in solids, impact and compaction, supersonic jet, multiphase flow, plasmas, magnetohyrdrodynamics, propulsion, shock waves in internal flows, pseudo-shock wave and shock train, nozzle flow, re-entry gasdynamics, shock waves in space, Richtmyer-Meshkov instability, shock/boundary layer interaction, shock/vortex interaction, shock wave reflection/interaction, shock wave interaction with dusty media, shock wave interaction with granular media, shock wave interaction with porous media, shock wave interaction with obstacles, supersonic and hypersonic flows, sonic boom, shock wave focusing, safety against shock loading, shock waves for material processing, shock-like phenomena, and shock wave education. These proceedings contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 31 and individuals interested in these fields.
Download or read book 29th International Symposium on Shock Waves 2 written by Riccardo Bonazza and published by Springer. This book was released on 2015-07-10 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interested in these fields.
Download or read book Liutex and Its Applications in Turbulence Research written by Chaoqun Liu and published by Academic Press. This book was released on 2020-10-29 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence. - Provides an accurate mathematical definition of vortices - Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence - Explains the term "Rortex as a mathematically defined rigid rotation of fluids or vortex - Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence
Download or read book 30th International Symposium on Shock Waves 1 written by Gabi Ben-Dor and published by Springer. This book was released on 2017-08-09 with total page 746 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference for the participants of the ISSW30 and anyone interested in these fields.
Download or read book Nonlinear Dynamics and Turbulence written by G. I. Barenblatt and published by Pitman Advanced Publishing Program. This book was released on 1983 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Statistical Hydrodynamic Models for Developed Mixing Instability Flows written by Antoine Llor and published by Springer Science & Business Media. This book was released on 2005-12-23 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Part textbook, part exploratory work, this book aims to raise the awareness of students, physicists, and engineers in turbulence on the modeling of gravitationally induced turbulent mixing flows as produced, for instance, by Rayleigh-Taylor instabilities. The discussion is centered on the differences between single-fluid and two-fluid approaches, and it is illustrated with a 0D analysis of two specific elementary models in common use. Important deviations are shown to appear on many features, among others the prominence of directed energy, the simultaneous restitution of test cases, the responses to variable acceleration and shocks, and the behavior of various length scales.
Download or read book 28th International Symposium on Shock Waves written by Konstantinos Kontis and published by Springer Science & Business Media. This book was released on 2012-03-22 with total page 1122 pages. Available in PDF, EPUB and Kindle. Book excerpt: The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.
Download or read book Shock turbulence Interaction and Richtmyer Meshkov Instability in Spherical Geometry written by Ankit Vijay Bhagatwala and published by Stanford University. This book was released on 2011 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: The canonical problems of shock-turbulence interaction and Richtmyer-Meshkov instability (RMI) are central to understanding the hydrodynamic processes involved in Inertial Confinement Fusion (ICF). Over the last few decades, there has been considerable analytical, computational and experimental work on the planar versions of these problems. In spite of the problem of interest being spherical in nature, there have been few studies in any of the three areas for these problems. It is not clear a priori, that the conclusions drawn from planar versions of these problems carry over to the spherical domain. The research presented here represents a first attempt to understand the hydrodynamic processes involved in an Inertial Fusion Engine (IFE) from capsule implosion to interaction of the resulting shock waves with the chamber gases. To abstract the key hydrodynamic components from the complex physics involved in an IFE, three canonical problems are identified and simulated: Interaction of a blast wave with isotropic turbulence, interaction of a converging shock with isotropic turbulence and RMI in spherical geometry. The last problem is a hydrodynamic abstraction of the capsule implosion itself, while the first two problems attempt to model the late stage interaction of fusion induced shock waves with chamber gases. On the shock-turbulence front, the study primarily focuses on the effect of shock strength relative to background turbulence on vorticity dynamics, which forms the cornerstone of any turbulence simulation. The effect of turbulence on shock structure is also characterized. For the converging shock, the maximum compression achieved in presence of turbulence is compared with that for a pure shock. For spherical RMI, focus is on evolution of the mixing layer and growth in vorticity and turbulent kinetic energy for different incident shock Mach numbers. The effect of interface perturbation on maximum compression achieved, which is one of the most important metrics for feasible ICF, is also considered.
Download or read book Multiscale Turbulent Transport written by Marco Martins Afonso and published by MDPI. This book was released on 2020-02-05 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent transport is currently a prominent and ongoing investigation subject at the interface of methodologies from theory to numerical simulations and experiments, and it covers several spatiotemporal scales. Mathematical analysis, physical modelling, and engineering applications represent different facets of a classical, long-standing problem that is still far from being thoroughly comprehended. The goal of this Special Issue is to outline recent advances of such subjects as multiscale analysis in turbulent transport processes, Lagrangian and Eulerian descriptions of turbulence, advection of particles and fields in turbulent flows, ideal or nonideal turbulence (unstationary/inhomogeneous/anisotropic/compressible), turbulent flows in biofluid mechanics and magnetohydrodynamics, and the control and optimization of turbulent transport. The SI is open to regular articles, review papers focused on the state of the art and the progress made over the last few years, and new research trends.
Download or read book Hyperbolic Problems Theory Numerics Applications Proceedings Of The Fifth International Conference written by James Glimm and published by World Scientific. This book was released on 1996-03-14 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The intellectual center of this proceedings volume is the subject of conservation laws. Conservation laws are the most basic model of many continuum processes, and for this reason they govern the motion of fluids, solids, and plasma. They are basic to the understanding of more complex modeling issues, such as multiphase flow, chemically reacting flow, and non-equilibrium thermodynamics. Equations of this type also arise in novel and unexpected areas, such as the pattern recognition and image processing problem of edge enhancement and detection. The articles in this volume address the entire range of the study of conservation laws, including the fundamental mathematical theory, familiar and novel applications, and the numerical problem of finding effective computational algorithms for the solution of these problems.