Download or read book Snapshots of Hemodynamics written by Nico Westerhof and published by Springer Science & Business Media. This book was released on 2006-01-12 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hemodynamics makes it possible to characterize in a quantitative way, the function of the heart and arterial system, thereby producing information about what genetic and molecular processes are of importance for cardiovascular function. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education by Nico Westerhof, Nikos Stergiopulos and Mark I. M. Noble is a quick reference guide designed to help basic and clinical researchers as well as graduate students to understand hemodynamics. The layout of the book provides short and independent chapters that provide teaching diagrams as well as clear descriptions of the essentials of basic and applied principles of hemodynamics. References are provided at the end of each chapter for further reading and reference.
Download or read book Stability and Transition in Shear Flows written by Peter J. Schmid and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: A detailed look at some of the more modern issues of hydrodynamic stability, including transient growth, eigenvalue spectra, secondary instability. It presents analytical results and numerical simulations, linear and selected nonlinear stability methods. By including classical results as well as recent developments in the field of hydrodynamic stability and transition, the book can be used as a textbook for an introductory, graduate-level course in stability theory or for a special-topics fluids course. It is equally of value as a reference for researchers in the field of hydrodynamic stability theory or with an interest in recent developments in fluid dynamics. Stability theory has seen a rapid development over the past decade, this book includes such new developments as direct numerical simulations of transition to turbulence and linear analysis based on the initial-value problem.
Download or read book Turbulent Fluid Flow written by Peter S. Bernard and published by John Wiley & Sons. This book was released on 2019-03-11 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to the essential information needed to model and compute turbulent flows and interpret experiments and numerical simulations Turbulent Fluid Flow offers an authoritative resource to the theories and models encountered in the field of turbulent flow. In this book, the author – a noted expert on the subject – creates a complete picture of the essential information needed for engineers and scientists to carry out turbulent flow studies. This important guide puts the focus on the essential aspects of the subject – including modeling, simulation and the interpretation of experimental data - that fit into the basic needs of engineers that work with turbulent flows in technological design and innovation. Turbulent Fluid Flow offers the basic information that underpins the most recent models and techniques that are currently used to solve turbulent flow challenges. The book provides careful explanations, many supporting figures and detailed mathematical calculations that enable the reader to derive a clear understanding of turbulent fluid flow. This vital resource: Offers a clear explanation to the models and techniques currently used to solve turbulent flow problems Provides an up-to-date account of recent experimental and numerical studies probing the physics of canonical turbulent flows Gives a self-contained treatment of the essential topics in the field of turbulence Puts the focus on the connection between the subject matter and the goals of fluids engineering Comes with a detailed syllabus and a solutions manual containing MATLAB codes, available on a password-protected companion website Written for fluids engineers, physicists, applied mathematicians and graduate students in mechanical, aerospace and civil engineering, Turbulent Fluid Flow contains an authoritative resource to the information needed to interpret experiments and carry out turbulent flow studies.
Download or read book IUTAM Symposium on Laminar Turbulent Transition and Finite Amplitude Solutions written by Tom Mullin and published by Springer Science & Business Media. This book was released on 2005-12-28 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: An exciting new direction in hydrodynamic stability theory and the transition to turbulence is concerned with the role of disconnected states or finite amplitude solutions in the evolution of disorder in fluid flows. This volume contains refereed papers presented at the IUTAM/LMS sponsored symposium on "Non-Uniqueness of Solutions to the Navier-Stokes equations and their Connection with Laminar-Turbulent Transition" held in Bristol 2004. Theoreticians and experimentalists gathered to discuss developments in understanding both the onset and collapse of disordered motion in shear flows such as those found in pipes and channels. The central objective of the symposium was to discuss the increasing amount of experimental and numerical evidence for finite amplitude solutions to the Navier-Stokes equations and to set the work into a modern theoretical context. The participants included many of the leading authorities in the subject and this volume captures much of the flavour of the resulting stimulating and lively discussions.
Download or read book Turbulence In Coastal And Civil Engineering written by B Mutlu Sumer and published by World Scientific. This book was released on 2020-03-23 with total page 758 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the subject of turbulence encountered in coastal and civil engineering.The primary aim of the book is to describe turbulence processes including transition to turbulence; mean and fluctuating flows in channels/pipes, and in currents; wave boundary layers (including boundary layers under solitary waves); streaming processes in wave boundary layers; turbulence processes in breaking waves including breaking solitary waves; turbulence processes such as bursting process and their implications for sediment transport; flow resistance in steady and wave boundary layers; and turbulent diffusion and dispersion processes in the coastal and river environment, including sediment transport due to diffusion/dispersion.Both phenomenological and statistical theories are described in great detail. Turbulence modelling is also described, and several examples for modelling of turbulence in steady flow and wave boundary layers are presented.The book ends with a chapter containing hands-on exercises on a wide variety of turbulent flows including experimental study of turbulence in an open-channel flow, using Laser Doppler Anemometry; Statistical, correlation and spectral analysis of turbulent air jet flow; Turbulence modelling of wave boundary layer flows; and numerical modelling of dispersion in a turbulent boundary layer, a set of exercises used by the authors in their Masters classes over many years.Although the book is essentially intended for professionals and researchers in the area of Coastal and Civil Engineering, and as a text book for graduate/post graduate students, the contents of the book will, however, additionally provide sufficient background in the study of turbulent flows relevant to many other disciplines, such as Wind Engineering, Mechanical Engineering, and Environmental Engineering.
Download or read book Essential Equations for Anaesthesia written by Edward T. Gilbert-Kawai and published by Cambridge University Press. This book was released on 2014-05-08 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers all of the equations that candidates need to understand and be able to apply when sitting postgraduate anaesthetic examinations.
Download or read book The Structure of Turbulent Shear Flow written by A. A. R. Townsend and published by Cambridge University Press. This book was released on 1976 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.
Download or read book Boundary Layer Theory written by Hermann Schlichting (Deceased) and published by Springer. This book was released on 2016-10-04 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition of the near-legendary textbook by Schlichting and revised by Gersten presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with particular emphasis on the flow past bodies (e.g. aircraft aerodynamics). The new edition features an updated reference list and over 100 additional changes throughout the book, reflecting the latest advances on the subject.
Download or read book Turbulence and Interactions written by Michel Deville and published by Springer Science & Business Media. This book was released on 2009-03-20 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains seven keynote lectures of the TI 2006 conference that was held in Porquerolles, May 29-June 2, 2006. This book offers a view on theory, experiments and numerical simulations in the field of turbulence.
Download or read book Boundary Layer and Flow Control written by Gustav Victor Lachmann and published by Pergamon. This book was released on 1961 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Physics for the Anaesthetic Viva written by Aman Kalsi and published by Cambridge University Press. This book was released on 2016-03-31 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise book that conveys the essential physics concepts required to pass the FRCA viva examinations, with relevant applied questions.
Download or read book Advanced Manufacturing Processes written by Volodymyr Tonkonogyi and published by Springer Nature. This book was released on 2020-03-27 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a timely yet comprehensive snapshot of innovative research and developments in the area of manufacturing. It covers a wide range of manufacturing processes, such as cutting, coatings, and grinding, highlighting the advantages provided by the use of new materials and composites, as well as new methods and technologies. It discusses topics in energy generation and pollution prevention. It shows how computational methods and mathematical models have been applied to solve a number of issues in both theoretical and applied research. Based on selected papers presented at the Grabchenko’s International Conference on Advanced Manufacturing Processes (InterPartner-2019), held in Odessa, Ukraine on September 10-13, 2019, this book offers a timely overview and extensive information on trends and technologies in the area of manufacturing, mechanical and materials engineering. It is also intended to facilitate communication and collaboration between different groups working on similar topics, and to offer a bridge between academic and industrial researchers.
Download or read book Chemical Oscillations Waves and Turbulence written by Y. Kuramoto and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tbis book is intended to provide a few asymptotic methods which can be applied to the dynamics of self-oscillating fields of the reaction-diffusion type and of some related systems. Such systems, forming cooperative fields of a large num of interacting similar subunits, are considered as typical synergetic systems. ber Because each local subunit itself represents an active dynamical system function ing only in far-from-equilibrium situations, the entire system is capable of showing a variety of curious pattern formations and turbulencelike behaviors quite unfamiliar in thermodynamic cooperative fields. I personally believe that the nonlinear dynamics, deterministic or statistical, of fields composed of similar active (Le., non-equilibrium) elements will form an extremely attractive branch of physics in the near future. For the study of non-equilibrium cooperative systems, some theoretical guid ing principle would be highly desirable. In this connection, this book pushes for ward a particular physical viewpoint based on the slaving principle. The dis covery of tbis principle in non-equilibrium phase transitions, especially in lasers, was due to Hermann Haken. The great utility of this concept will again be dem onstrated in tbis book for the fields of coupled nonlinear oscillators.
Download or read book Fluid Flow Phenomena written by Paolo Orlandi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the simulation of the incompressible Navier-Stokes equations for laminar and turbulent flows. The book is limited to explaining and employing the finite difference method. It furnishes a large number of source codes which permit to play with the Navier-Stokes equations and to understand the complex physics related to fluid mechanics. Numerical simulations are useful tools to understand the complexity of the flows, which often is difficult to derive from laboratory experiments. This book, then, can be very useful to scholars doing laboratory experiments, since they often do not have extra time to study the large variety of numerical methods; furthermore they cannot spend more time in transferring one of the methods into a computer language. By means of numerical simulations, for example, insights into the vorticity field can be obtained which are difficult to obtain by measurements. This book can be used by graduate as well as undergraduate students while reading books on theoretical fluid mechanics; it teaches how to simulate the dynamics of flow fields on personal computers. This will provide a better way of understanding the theory. Two chapters on Large Eddy Simulations have been included, since this is a methodology that in the near future will allow more universal turbulence models for practical applications. The direct simulation of the Navier-Stokes equations (DNS) is simple by finite-differences, that are satisfactory to reproduce the dynamics of turbulent flows. A large part of the book is devoted to the study of homogeneous and wall turbulent flows. In the second chapter the elementary concept of finite difference is given to solve parabolic and elliptical partial differential equations. In successive chapters the 1D, 2D, and 3D Navier-Stokes equations are solved in Cartesian and cylindrical coordinates. Finally, Large Eddy Simulations are performed to check the importance of the subgrid scale models. Results for turbulent and laminar flows are discussed, with particular emphasis on vortex dynamics. This volume will be of interest to graduate students and researchers wanting to compare experiments and numerical simulations, and to workers in the mechanical and aeronautic industries.
Download or read book Basics of Engineering Turbulence written by David Ting and published by Academic Press. This book was released on 2016-02-23 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Basics of Engineering Turbulence introduces flow turbulence to engineers and engineering students who have a fluid dynamics background, but do not have advanced knowledge on the subject. It covers the basic characteristics of flow turbulence in terms of its many scales. The author uses a pedagogical approach to help readers better understand the fundamentals of turbulence scales, especially how they are derived through the order of magnitude analysis. This book is intended for those who have an interest in flowing fluids. It provides some background, though of limited scope, on everyday flow turbulence, especially in engineering applications. The book begins with the 'basics' of turbulence which is necessary for any reader being introduced to the subject, followed by several examples of turbulence in engineering applications. This overall approach gives readers all they need to grasp both the fundamentals of turbulence and its applications in practical instances. - Focuses on the basics of turbulence for applications in engineering and industrial settings - Provides an understanding of concepts that are often challenging, such as energy distribution among the turbulent structures, the effective diffusivity, and the theory behind turbulence scales - Offers a user-friendly approach with clear-and-concise explanations and illustrations, as well as end-of-chapter problems
Download or read book Boundary Layer Theory written by Herrmann Schlichting and published by Springer Science & Business Media. This book was released on 2003-05-20 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of the almost legendary textbook by Schlichting completely revised by Klaus Gersten is now available. This book presents a comprehensive overview of boundary-layer theory and its application to all areas of fluid mechanics, with emphasis on the flow past bodies (e.g. aircraft aerodynamics). It contains the latest knowledge of the subject based on a thorough review of the literature over the past 15 years. Yet again, it will be an indispensable source of inexhaustible information for students of fluid mechanics and engineers alike.
Download or read book Advances in Turbulence XII written by Bruno Eckhardt and published by Springer. This book was released on 2016-09-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lagrangian aspects.- Lagrangian modeling and properties of particles with inertia.- Effect of Faxén forces on acceleration statistics of material particles in turbulent flow.- Lagrangian analysis of turbulent convection.- Linear and angular dynamics of an inertial particle in turbulence.- Collision rate between heavy particles in a model turbulent flow.- From cloud condensation nuclei to cloud droplets: a turbulent model.- Lagrangian statistics of inertial particles in turbulent flow.- Lagrangian statistics of two–dimensional turbulence in a square container.- Measurement of Lagrangian Particle Trajectories by Digital in-line Holography.- 3-D Particle Tracking Velocimetry (PTV) in gas flows using coloured tracer particles.- Two-particle dispersion in 2D inverse cascade turbulence and its telegraph equation model.- Numerical simulations of particle dispersion in stratified flows.- Instability and Transition.- Experimental study of the von Kármán flow from = 10 to 10: spontaneous symmetry breaking and turbulent bifurcations.- Flow reversals in a vertical channel.- Linear Instability of Streamwise Corner Flow.- DNS of turbulent plane Couette flow with emphasis on turbulent stripe.- Geometry of state space in plane Couette flow.- Linear and nonlinear instabilities of sliding Couette flow.- Localization in plane Couette edge dynamics.- Nonlinear optimal perturbations in plane Couette flow.- Order parameter in laminar-turbulent patterns.- Pattern formation in low Reynolds number plane Couette flow.- Quasi-stationary and chaotic convection in low rotating spherical shells.- Linear stability of 2D rough channels.- Transient turbulent bursting in enclosed flows.- On New Localized Vortex Solutions in the Couette-Ekman Layer.- Shear instabilities in Taylor-Couette flow.- Particle Tracking Velocimetry in Transitional Plane Couette Flow.- Experimental study of coherent structures in turbulent pipe flow.- Forced localized turbulence in pipe flows.- From localized to expanding turbulence.- Influence of test-rigs on the laminar-to-turbulent transition of pipe flows.- Interaction of turbulent spots in pipe flow.- Large-scale transitional dynamics in pipe flow.- Nonlinear coherent structures in a square duct.- Quantitative measurement of the life time of turbulence in pipe flow.- Experimental investigation of turbulent patch evolution in spatially steady boundary layers.- Interaction of noise disturbances and streamwise streaks.- Linear generation of multiple time scales by 3D unstable perturbations.- Convection at very high Rayleigh number: signature of transition from a micro-thermometer inside the flow.- Estimating local instabilities for irregular flows in the differentially heated rotating annulus.- Search for the “ultimate state” in turbulent Rayleigh-Bénard convection.- Rayleigh–Taylor instability in two dimensions and phase-field method.- Split energy cascade in quasi-2D turbulence.- Stabililty and laminarisation of turbulent rotating channel flow.- The vortical flow pattern exhibited by the channel flow on a rotating system just past transition under the influence of the Coriolis force.- Transient evolution and high stratification scaling in horizontal mixing layers.- Control of turbulent flows.- Toward cost-effective Control of Wall Turbulence for Skin Friction Drag Reduction.- Active control of turbulent boundary layer using an array of piezo-ceramic actuators.- Flat plate turbulent boundary-layer control using vertical LEBUs.- Estimation of the spanwise wall shear stress based on upstream information for wall turbulence control.- Interactions between vortex generators and a flat plate boundary layer. Application to the control of separated flows..- Modulated global mode of a controlled wake.- Swirl effects in turbulent pipe flow.- Control of an axisymmetric turbulent wake by a pulsed jet.- Direct Numerical Simulations of turbulent mixed convection in enclosures with heated obstacles.-