EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Hydrodynamic Instability and Transition to Turbulence

Download or read book Hydrodynamic Instability and Transition to Turbulence written by Akiva M. Yaglom and published by Springer Science & Business Media. This book was released on 2012-12-18 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a complete revision of the part of Monin & Yaglom's famous two-volume work "Statistical Fluid Mechanics: Mechanics of Turbulence" that deals with the theory of laminar-flow instability and transition to turbulence. It includes the considerable advances in the subject that have been made in the last 15 years or so. It is intended as a textbook for advanced graduate courses and as a reference for research students and professional research workers. The first two Chapters are an introduction to the mathematics, and the experimental results, for the instability of laminar (or inviscid) flows to infinitesimal (in practice "small") disturbances. The third Chapter develops this linear theory in more detail and describes its application to particular problems. Chapters 4 and 5 deal with instability to finite-amplitude disturbances: much of the material has previously been available only in research papers.

Book Fluid Mechanics

Download or read book Fluid Mechanics written by L D Landau and published by Elsevier. This book was released on 2013-09-03 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid Mechanics, Second Edition deals with fluid mechanics, that is, the theory of the motion of liquids and gases. Topics covered range from ideal fluids and viscous fluids to turbulence, boundary layers, thermal conduction, and diffusion. Surface phenomena, sound, and shock waves are also discussed, along with gas flow, combustion, superfluids, and relativistic fluid dynamics. This book is comprised of 16 chapters and begins with an overview of the fundamental equations of fluid dynamics, including Euler's equation and Bernoulli's equation. The reader is then introduced to the equations of motion of a viscous fluid; energy dissipation in an incompressible fluid; damping of gravity waves; and the mechanism whereby turbulence occurs. The following chapters explore the laminar boundary layer; thermal conduction in fluids; dynamics of diffusion of a mixture of fluids; and the phenomena that occur near the surface separating two continuous media. The energy and momentum of sound waves; the direction of variation of quantities in a shock wave; one- and two-dimensional gas flow; and the intersection of surfaces of discontinuity are also also considered. This monograph will be of interest to theoretical physicists.

Book Poromechanics II

Download or read book Poromechanics II written by J.L. Auriault and published by CRC Press. This book was released on 2020-12-17 with total page 972 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings deal with the fundamentals and applications of poromechanics to geomechanics, material sciences, geophysics, acoustics and biomechanics. They discuss the state of the art in such topics as constitutive modelling and upscaling methods.

Book Fluidization VIII

Download or read book Fluidization VIII written by Jean François Large and published by . This book was released on 1996 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Heat Transfer Augmentation in Turbulent Flows

Download or read book Heat Transfer Augmentation in Turbulent Flows written by Antanas Pedišius and published by . This book was released on 1995 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent flow is the most common form of motion of liquids and gases playing the role of the heat-transfer medium in thermal systems. The complexity of turbulent flow and the importance of hydrodynamics and heat transfer in practice inspired continuing research for methods of efficient heat augmentation by the Lithuanian Energy Institute. The solution of this problem was directly linked with the determination of the reaction of flow in the boundary layer to the effect of various factors and heat transfer rate under given conditions. The investigated factors included elevated degree of turbulence of the external flow as well as strong acceleration and turbulization of flow near the wall by surface roughness. The material in this volume shows that it is possible to control the efficiency of turbulent transfer when the vortical structure of the turbulent flow is known.

Book Bubbles  Drops  and Particles in Non Newtonian Fluids

Download or read book Bubbles Drops and Particles in Non Newtonian Fluids written by Raj P. Chhabra and published by CRC Press. This book was released on 2023-08-31 with total page 1147 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third edition of Bubbles, Drops, and Particles in Non-Newtonian Fluids provides comprehensive coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. Thoroughly updating and expanding its best-selling predecessor, this edition addresses numerical and experimental developments in non-Newtonian particulate systems. It includes a new chapter on heat transfer in non-Newtonian fluids in the free and mixed convection regimes and thus covers forced convection regimes separately in this edition. Salient Features: Demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multiphase flows Addresses heat transfer in Generalized Newtonian Fluid (GNF), visco-plastic and visco-elastic fluids throughout the book and outlines potential strategies for heat transfer enhancement Provides a new detailed section on the effect of confinement on heat transfer from bluff-bodies in non-Newtonian fluids Written in a clear and concise manner, this book remains an excellent handbook and reference. It is essential reading for students and researchers interested in exploring particle motion in different types of non-Newtonian systems encountered in disciplines across engineering and the sciences.

Book Bubbles  Drops  and Particles in Non Newtonian Fluids

Download or read book Bubbles Drops and Particles in Non Newtonian Fluids written by R.P. Chhabra and published by CRC Press. This book was released on 2006-07-25 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bubbles, Drops, and Particles in Non-Newtonian Fluids, Second Edition continues to provide thorough coverage of the scientific foundations and the latest advances in particle motion in non-Newtonian media. The book demonstrates how dynamic behavior of single particles can yield useful information for modeling transport processes in complex multipha

Book Turbulence and Flow   Sediment Interactions in Open Channel Flows

Download or read book Turbulence and Flow Sediment Interactions in Open Channel Flows written by Roberto Gaudio and published by MDPI. This book was released on 2021-06-04 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main focus of this Special Issue of Water is the state-of-the-art and recent research on turbulence and flow–sediment interactions in open-channel flows. Our knowledge of river hydraulics is deepening, thanks to both laboratory/field experiments related to the characteristics of turbulence and their link to erosion, transport, deposition, and local scouring phenomena. Collaboration among engineers, physicists, and other experts is increasing and furnishing new inter-/multidisciplinary perspectives to the research of river hydraulics and fluid mechanics. At the same time, the development of both sophisticated laboratory instrumentation and computing skills is giving rise to excellent experimental–numerical comparative studies. Thus, this Special Issue, with ten papers by researchers from many institutions around the world, aims at offering a modern panoramic view on all the above aspects to the vast audience of river researchers.

Book Scale Invariance

    Book Details:
  • Author : Annick LESNE
  • Publisher : Springer Science & Business Media
  • Release : 2011-11-04
  • ISBN : 364215123X
  • Pages : 406 pages

Download or read book Scale Invariance written by Annick LESNE and published by Springer Science & Business Media. This book was released on 2011-11-04 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos and turbulence. The chapters are jointly written by an experimentalist and a theorist. This book aims at a pedagogical overview, offering to the students and researchers a thorough conceptual background and a simple account of a wide range of applications. It presents a complete tour of both the formal advances and experimental results associated with the notion of scaling, in physics, chemistry and biology.

Book Progress in low temperature physics

Download or read book Progress in low temperature physics written by C. J. Gorter and published by . This book was released on 1967 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book CJChE

Download or read book CJChE written by and published by . This book was released on 2005-08 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A First Course in Turbulence

Download or read book A First Course in Turbulence written by Henk Tennekes and published by MIT Press. This book was released on 2018-04-27 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of rivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and spectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.

Book Hydrodynamics of Pumps

Download or read book Hydrodynamics of Pumps written by Christopher E. Brennen and published by Cambridge University Press. This book was released on 2011-03-28 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydrodynamics of Pumps is a reference for pump experts and a textbook for advanced students. It examines the fluid dynamics of liquid turbomachines, particularly pumps, focusing on special problems and design issues associated with the flow of liquid through a rotating machine. There are two characteristics of a liquid that lead to problems and cause a significantly different set of concerns than those in gas turbines. These are the potential for cavitation and the high density of liquids, which enhances the possibility of damaging, unsteady flows and forces. The book begins with an introduction to the subject, including cavitation, unsteady flows and turbomachinery, basic pump design and performance principles. Chapter topics include flow features, cavitation parameters and inception, bubble dynamics, cavitation effects on pump performance, and unsteady flows and vibration in pumps - discussed in the three final chapters. The book is richly illustrated and includes many practical examples.

Book The Finite Volume Method in Computational Fluid Dynamics

Download or read book The Finite Volume Method in Computational Fluid Dynamics written by F. Moukalled and published by Springer. This book was released on 2015-08-13 with total page 799 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Book Progress in Low Temperature Physics

Download or read book Progress in Low Temperature Physics written by and published by Elsevier. This book was released on 2008-11-05 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in Low Temperature Physics: Quantum Turbulence presents seven review articles on the recent developments on quantum turbulence. Turbulence has been a great mystery in natural science and technology for more than 500 years since the time of Leonardo da Vinci. Recently turbulence in quantum systems at low temperatures has developed into a new research field. Quantum turbulence is comprised of quantized vortices, realized in superfluid helium and quantum gases of cold atoms. Some of the important topics include energy spectra, vibrating structures, and visualization techniques. The understanding of these remarkable systems can have an impact on the general field of turbulence and will be of broad interest to scientists and students in low temperature physics, hydrodynamics and engineering. - Key subjects covered: Energy spectra in quantum turbulence, Turbulent dynamics in rotating helium superfluids: a comparison of 3He-B and 4He-II, Quantum turbulence in superfluid 3He at very low temperatures, The use of vibrating structures in the study of quantum turbulence, Visualization of quantum turbulence, Capillary turbulence on the surface of quantum fluids, Quantized vortices in atomic Bose-Einstein condensates - Crucial information for all experimenters in low temperature physics

Book Transport Phenomena in Dispersed Media

Download or read book Transport Phenomena in Dispersed Media written by G. I. Kelbaliyev and published by CRC Press. This book was released on 2019-09-26 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport Phenomena in Dispersed Media addresses the main problems associated with the transfer of heat, mass and momentum. The authors focus on the analytical solutions of the mass and heat transfer equations; the theoretical problems of coalescence, coagulation, aggregation and fragmentation of dispersed particles; the rheology of structured aggregate and kinetically stable disperse systems; the precipitation of particles in a turbulent flow; the evolution of the distribution function; the stochastic counterpart of the mass transfer equations; the dissipation of energy in disperse systems; and many other problems that distinguish this book from existing publications. Key Selling Features Covers all technological processes taking place in the oil and gas complex, as well as in the petrochemical industry Presents new original solutions for calculating design as well as for the development and implementation of processes of chemical technology Organized to first provide an extensive review of each chapter topic, solve specific problems, and then review the solutions with the reader Contains complex mathematical expressions for practical calculations Compares results obtained on the basis of mathematical models with experimental data

Book Numerical Methods for Conservation Laws

Download or read book Numerical Methods for Conservation Laws written by LEVEQUE and published by Birkhäuser. This book was released on 2013-11-11 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.