Download or read book Cones and Duality written by Charalambos D. Aliprantis and published by American Mathematical Soc.. This book was released on 2007-06-12 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ordered vector spaces and cones made their debut in mathematics at the beginning of the twentieth century. They were developed in parallel (but from a different perspective) with functional analysis and operator theory. Before the 1950s, ordered vector spaces appeared in the literature in a fragmented way. Their systematic study began around the world after 1950 mainly through the efforts of the Russian, Japanese, German, and Dutch schools. Since cones are being employed to solve optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a variety of applied problems appearing in several diverse areas, such as engineering, econometrics, and the social sciences. For this reason this theory plays a prominent role not only in functional analysis but also in a wide range of applications. This is a book about a modern perspective on cones and ordered vector spaces. It includes material that has not been presented earlier in a monograph or a textbook. With many exercises of varying degrees of difficulty, the book is suitable for graduate courses. Most of the new topics currently discussed in the book have their origins in problems from economics and finance. Therefore, the book will be valuable to any researcher and graduate student who works in mathematics, engineering, economics, finance, and any other field that uses optimization techniques.
Download or read book Harmonic Analysis on Commutative Spaces written by Joseph Albert Wolf and published by American Mathematical Soc.. This book was released on 2007 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study starts with the basic theory of topological groups, harmonic analysis, and unitary representations. It then concentrates on geometric structure, harmonic analysis, and unitary representation theory in commutative spaces.
Download or read book Pseudo differential Operators and the Nash Moser Theorem written by Serge Alinhac and published by American Mathematical Soc.. This book was released on 2007 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents two essential and apparently unrelated subjects. The first, microlocal analysis and the theory of pseudo-differential operators, is a basic tool in the study of partial differential equations and in analysis on manifolds. The second, the Nash-Moser theorem, continues to be fundamentally important in geometry, dynamical systems and nonlinear PDE. Each of the subjects, which are of interest in their own right as well as for applications, can be learned separately. But the book shows the deep connections between the two themes, particularly in the middle part, which is devoted to Littlewood-Paley theory, dyadic analysis, and the paradifferential calculus and its application to interpolation inequalities. An important feature is the elementary and self-contained character of the text, to which many exercises and an introductory Chapter $0$ with basic material have been added. This makes the book readable by graduate students or researchers from one subject who are interested in becoming familiar with the other. It can also be used as a textbook for a graduate course on nonlinear PDE or geometry.
Download or read book Elements of Homology Theory written by Viktor Vasilʹevich Prasolov and published by American Mathematical Soc.. This book was released on 2007 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.
Download or read book Probability written by Davar Khoshnevisan and published by American Mathematical Soc.. This book was released on with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for a one-semester graduate course in measure-theoretic probability theory, but with ample material to cover an ordinary year-long course at a more leisurely pace. Khoshnevisan's approach is to develop the ideas that are absolutely central to modern probability theory, and to showcase them by presenting their various applications. As a result, a few of the familiar topics are replaced by interesting non-standard ones. The topics range from undergraduate probability and classical limit theorems to Brownian motion and elements of stochastic calculus. Throughout, the reader will find many exciting applications of probability theory and probabilistic reasoning. There are numerous exercises, ranging from the routine to the very difficult. Each chapter concludes with historical notes.
Download or read book Functions of Several Complex Variables and Their Singularities written by Wolfgang Ebeling and published by American Mathematical Soc.. This book was released on 2007 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an introduction to the theory of functions of several complex variables and their singularities, with special emphasis on topological aspects. The topics include Riemann surfaces, holomorphic functions of several variables, classification and deformation of singularities, fundamentals of differential topology, and the topology of singularities. The aim of the book is to guide the reader from the fundamentals to more advanced topics of recent research. All the necessary prerequisites are specified and carefully explained. The general theory is illustrated by various examples and applications.
Download or read book What s Happening in the Mathematical Sciences written by Barry Cipra and published by American Mathematical Soc.. This book was released on with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.
Download or read book Mathematical Bridges written by Titu Andreescu and published by Birkhäuser. This book was released on 2017-02-17 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building bridges between classical results and contemporary nonstandard problems, this highly relevant work embraces important topics in analysis and algebra from a problem-solving perspective. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and motivated mathematics students from high school juniors to college seniors will find the work a useful resource in calculus, linear and abstract algebra, analysis and differential equations. Students with an interest in mathematics competitions must have this book in their personal libraries.
Download or read book Partial Differential Equations written by Emmanuele DiBenedetto and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is meant to be a self-contained, elementary introduction to Partial Differential Equations, assuming only advanced differential calculus and some basic LP theory. Although the basic equations treated in this book, given its scope, are linear, we have made an attempt to approach them from a nonlinear perspective. Chapter I is focused on the Cauchy-Kowaleski theorem. We discuss the notion of characteristic surfaces and use it to classify partial differential equations. The discussion grows out of equations of second order in two variables to equations of second order in N variables to p.d.e.'s of any order in N variables. In Chapters II and III we study the Laplace equation and connected elliptic theory. The existence of solutions for the Dirichlet problem is proven by the Perron method. This method clarifies the structure ofthe sub(super)harmonic functions and is closely related to the modern notion of viscosity solution. The elliptic theory is complemented by the Harnack and Liouville theorems, the simplest version of Schauder's estimates and basic LP -potential estimates. Then, in Chapter III, the Dirichlet and Neumann problems, as well as eigenvalue problems for the Laplacian, are cast in terms of integral equations. This requires some basic facts concerning double layer potentials and the notion of compact subsets of LP, which we present.
Download or read book Bourbaki written by Maurice Mashaal and published by American Mathematical Soc.. This book was released on 2006 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: The name Bourbaki is known to every mathematician. This book presents accounts of the origins of Bourbaki, their meetings, their seminars, and the members themselves. It also discusses the lasting influence that Bourbaki has had on mathematics, through both the Elements and the Seminaires.
Download or read book Dynamical Systems with Applications using Mathematica written by Stephen Lynch and published by Springer Science & Business Media. This book was released on 2007-09-20 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to the theory of dynamical systems with the aid of the Mathematica® computer algebra package. The book has a very hands-on approach and takes the reader from basic theory to recently published research material. Emphasized throughout are numerous applications to biology, chemical kinetics, economics, electronics, epidemiology, nonlinear optics, mechanics, population dynamics, and neural networks. Theorems and proofs are kept to a minimum. The first section deals with continuous systems using ordinary differential equations, while the second part is devoted to the study of discrete dynamical systems.
Download or read book Introduction to Topology and Geometry written by Saul Stahl and published by John Wiley & Sons. This book was released on 2014-08-21 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition “. . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained.” —CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparalleled range of topics. Illustrating modern mathematical topics, Introduction to Topology and Geometry, Second Edition discusses introductory topology, algebraic topology, knot theory, the geometry of surfaces, Riemann geometries, fundamental groups, and differential geometry, which opens the doors to a wealth of applications. With its logical, yet flexible, organization, the Second Edition: • Explores historical notes interspersed throughout the exposition to provide readers with a feel for how the mathematical disciplines and theorems came into being • Provides exercises ranging from routine to challenging, allowing readers at varying levels of study to master the concepts and methods • Bridges seemingly disparate topics by creating thoughtful and logical connections • Contains coverage on the elements of polytope theory, which acquaints readers with an exposition of modern theory Introduction to Topology and Geometry, Second Edition is an excellent introductory text for topology and geometry courses at the upper-undergraduate level. In addition, the book serves as an ideal reference for professionals interested in gaining a deeper understanding of the topic.
Download or read book Introduction to Probability with Statistical Applications written by Géza Schay and published by Birkhäuser. This book was released on 2016-06-17 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this textbook serves as an introduction to probability and statistics for non-mathematics majors who do not need the exhaustive detail and mathematical depth provided in more comprehensive treatments of the subject. The presentation covers the mathematical laws of random phenomena, including discrete and continuous random variables, expectation and variance, and common probability distributions such as the binomial, Poisson, and normal distributions. More classical examples such as Montmort's problem, the ballot problem, and Bertrand’s paradox are now included, along with applications such as the Maxwell-Boltzmann and Bose-Einstein distributions in physics. Key features in new edition: * 35 new exercises * Expanded section on the algebra of sets * Expanded chapters on probabilities to include more classical examples * New section on regression * Online instructors' manual containing solutions to all exercises“/p> Advanced undergraduate and graduate students in computer science, engineering, and other natural and social sciences with only a basic background in calculus will benefit from this introductory text balancing theory with applications. Review of the first edition: This textbook is a classical and well-written introduction to probability theory and statistics. ... the book is written ‘for an audience such as computer science students, whose mathematical background is not very strong and who do not need the detail and mathematical depth of similar books written for mathematics or statistics majors.’ ... Each new concept is clearly explained and is followed by many detailed examples. ... numerous examples of calculations are given and proofs are well-detailed." (Sophie Lemaire, Mathematical Reviews, Issue 2008 m)
Download or read book General Lattice Theory written by G. Grätzer and published by Birkhäuser. This book was released on 2012-12-06 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the first half of the nineteenth century, George Boole's attempt to formalize propositional logic led to the concept of Boolean algebras. While investigating the axiomatics of Boolean algebras at the end of the nineteenth century, Charles S. Peirce and Ernst Schröder found it useful to introduce the lattice concept. Independently, Richard Dedekind's research on ideals of algebraic numbers led to the same discov ery. In fact, Dedekind also introduced modularity, a weakened form of distri butivity. Although some of the early results of these mathematicians and of Edward V. Huntington are very elegant and far from trivial, they did not attract the attention of the mathematical community. It was Garrett Birkhoff's work in the mid-thirties that started the general develop ment of lattice theory. In a brilliant series of papers he demonstrated the importance of lattice theory and showed that it provides a unifying framework for hitherto unrelated developments in many mathematical disciplines. Birkhoff himself, Valere Glivenko, Karl Menger, John von Neumann, Oystein Ore, and others had developed enough of this new field for Birkhoff to attempt to "seIl" it to the general mathematical community, which he did with astonishing success in the first edition of his Lattice Theory. The further development of the subject matter can best be followed by com paring the first, second, and third editions of his book (G. Birkhoff [1940], [1948], and [1967]).
Download or read book John von Neumann Selected Letters written by John Von Neumann and published by American Mathematical Soc.. This book was released on 2005 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: John von Neumann was perhaps the most influential mathematician of the twentieth century. Not only did he contribute to almost all branches of mathematics, he created new fields and was a pioneering influence in the development of computer science. During and after World War II, he was a much sought-after technical advisor. He served as a member of the Scientific Advisory Committee at the Ballistic Research Laboratories, the Navy Bureau of Ordinance, and the Armed Forces Special Weapons Project. He was a consultant to the Los Alamos Scientific Laboratory and was appointed by U.S. President Dwight D. Eisenhower to the Atomic Energy Commission. He received the Albert Einstein Commemorative Award, the Enrico Fermi Award, and the Medal of Freedom. This collection of about 150 of von Neumann's letters to colleagues, friends, government officials, and others illustrates both his brilliance and his strong sense of responsibility. It is the first substantial collection of his letters, giving a rare inside glimpse of his thinking on mathematics, physics, computer science, science management, education, consulting, politics, and war. With an introductory chapter describing the many aspects of von Neumann's scientific, political, and social activities, this book makes great reading. Readers of quite diverse backgrounds will be fascinated by this first-hand look at one of the towering figures of twentieth century science. Also of interest and available from the AMS is John von Neumann: The Scientific Genius Who Pioneered the Modern Computer, Game Theory, Nuclear Deterrence, and Much More. Information for our distributors: Copublished with the London Mathematical Society beginning with volume 4. Members of the LMS may order directly from the AMS at the AMS member price. The LMS is registered with the Charity Commissioners.
Download or read book Advances in Mathematical Finance written by Michael C. Fu and published by Springer Science & Business Media. This book was released on 2007-06-22 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained volume brings together a collection of chapters by some of the most distinguished researchers and practitioners in the field of mathematical finance and financial engineering. Presenting state-of-the-art developments in theory and practice, the book has real-world applications to fixed income models, credit risk models, CDO pricing, tax rebates, tax arbitrage, and tax equilibrium. It is a valuable resource for graduate students, researchers, and practitioners in mathematical finance and financial engineering.
Download or read book Stability of Dynamical Systems written by and published by Springer Science & Business Media. This book was released on 2008 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.