EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Advances and Trends in Optimization with Engineering Applications

Download or read book Advances and Trends in Optimization with Engineering Applications written by Tamas Terlaky and published by SIAM. This book was released on 2017-04-26 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization is of critical importance in engineering. Engineers constantly strive for the best possible solutions, the most economical use of limited resources, and the greatest efficiency. As system complexity increases, these goals mandate the use of state-of-the-art optimization techniques. In recent years, the theory and methodology of optimization have seen revolutionary improvements. Moreover, the exponential growth in computational power, along with the availability of multicore computing with virtually unlimited memory and storage capacity, has fundamentally changed what engineers can do to optimize their designs. This is a two-way process: engineers benefit from developments in optimization methodology, and challenging new classes of optimization problems arise from novel engineering applications. Advances and Trends in Optimization with Engineering Applications reviews 10 major areas of optimization and related engineering applications, providing a broad summary of state-of-the-art optimization techniques most important to engineering practice. Each part provides a clear overview of a specific area and discusses a range of real-world problems. The book provides a solid foundation for engineers and mathematical optimizers alike who want to understand the importance of optimization methods to engineering and the capabilities of these methods.

Book Convex Optimization

    Book Details:
  • Author : Sébastien Bubeck
  • Publisher : Foundations and Trends (R) in Machine Learning
  • Release : 2015-11-12
  • ISBN : 9781601988607
  • Pages : 142 pages

Download or read book Convex Optimization written by Sébastien Bubeck and published by Foundations and Trends (R) in Machine Learning. This book was released on 2015-11-12 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.

Book Recent Trends in Optimization Theory and Applications

Download or read book Recent Trends in Optimization Theory and Applications written by Ratan Prakash Agarwal and published by World Scientific. This book was released on 1995 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: World Scientific Series in Applicable Analysis (WSSIAA) aims at reporting new developments of high mathematical standard and current interest. Each volume in the series shall be devoted to the mathematical analysis that has been applied or potentially applicable to the solutions of scientific, engineering, and social problems. This volume contains 30 research articles on the theory of optimization and its applications by the leading scientists in the field. It is hoped that the material in the present volume will open new vistas in research.Contributors: B D O Anderson, M Bertaja, O J Boxma, O Burdakov, A Cantoni, D J Clements, B D Craven, J B Cruz, Jr., P Diamond, S V Drakunov, Y G Evtushenko, N M Filatov, I Galligani, J C Geromel, F Giannessi, M J Grimble, G O Guardabassi, D-W Gu, C H Houpis, D G Hull, C Itiki, X Jian, M A Johnson, R E Kalaba, J C Kalkkuhl, M R Katebi, T J Kim, P Kloeden, T Kobylarz, A J Laub, C S Lee, G Leitmann, B-G Liu, J Liu, Z-Q Luo, K A Lurie, P Maponi, J B Matson, A Mess, G Pacelli, M Pachter, I Postlethwaite, T Rapcsak, M C Recchioni, Y Sakawa, S V Savastyuk, K Schittkowski, Y Shi, M A Sikora, D D Siljak, K L Teo, C Tovey, P Tseng, F E Udwadia, H Unbehauen, A Vladimirov, B Vo, J F Whidborne, R Xu, P L Yu, V G Zhadan, F Zirilli.

Book Meta Heuristics

    Book Details:
  • Author : Stefan Voß
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461557755
  • Pages : 513 pages

Download or read book Meta Heuristics written by Stefan Voß and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimizations comprises a carefully refereed selection of extended versions of the best papers presented at the Second Meta-Heuristics Conference (MIC 97). The selected articles describe the most recent developments in theory and applications of meta-heuristics, heuristics for specific problems, and comparative case studies. The book is divided into six parts, grouped mainly by the techniques considered. The extensive first part with twelve papers covers tabu search and its application to a great variety of well-known combinatorial optimization problems (including the resource-constrained project scheduling problem and vehicle routing problems). In the second part we find one paper where tabu search and simulated annealing are investigated comparatively and two papers which consider hybrid methods combining tabu search with genetic algorithms. The third part has four papers on genetic and evolutionary algorithms. Part four arrives at a new paradigm within meta-heuristics. The fifth part studies the behavior of parallel local search algorithms mainly from a tabu search perspective. The final part examines a great variety of additional meta-heuristics topics, including neural networks and variable neighbourhood search as well as guided local search. Furthermore, the integration of meta-heuristics with the branch-and-bound paradigm is investigated.

Book Advances in Structural Engineering   Optimization

Download or read book Advances in Structural Engineering Optimization written by Sinan Melih Nigdeli and published by Springer Nature. This book was released on 2020-12-04 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an up-to-date source for computation applications of optimization, prediction via artificial intelligence methods, and evaluation of metaheuristic algorithm with different structural applications. As the current interest of researcher, metaheuristic algorithms are a high interest topic area since advance and non-optimized problems via mathematical methods are challenged by the development of advance and modified algorithms. The artificial intelligence (AI) area is also important in predicting optimum results by skipping long iterative optimization processes. The machine learning used in generation of AI models also needs optimum results of metaheuristic-based approaches. This book is a great source to researcher, graduate students, and bachelor students who gain project about structural optimization. Differently from the academic use, the chapter that emphasizes different scopes and methods can take the interest and help engineer working in design and production of structural engineering projects.

Book Trends in Developing Metaheuristics  Algorithms  and Optimization Approaches

Download or read book Trends in Developing Metaheuristics Algorithms and Optimization Approaches written by Yin, Peng-Yeng and published by IGI Global. This book was released on 2012-10-31 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developments in metaheuristics continue to advance computation beyond its traditional methods. With groundwork built on multidisciplinary research findings; metaheuristics, algorithms, and optimization approaches uses memory manipulations in order to take full advantage of strategic level problem solving. Trends in Developing Metaheuristics, Algorithms, and Optimization Approaches provides insight on the latest advances and analysis of technologies in metaheuristics computing. Offering widespread coverage on topics such as genetic algorithms, differential evolution, and ant colony optimization, this book aims to be a forum researchers, practitioners, and students who wish to learn and apply metaheuristic computing.

Book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.

Book Network Optimization and Control

Download or read book Network Optimization and Control written by Srinivas Shakkottai and published by Now Publishers Inc. This book was released on 2008 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Network Optimization and Control is the ideal starting point for a mature reader with little background on the subject of congestion control to understand the basic concepts underlying network resource allocation.

Book Optimization with Sparsity Inducing Penalties

Download or read book Optimization with Sparsity Inducing Penalties written by Francis Bach and published by . This book was released on 2011-12-23 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate nonsmooth norms. Optimization with Sparsity-Inducing Penalties presents optimization tools and techniques dedicated to such sparsity-inducing penalties from a general perspective. It covers proximal methods, block-coordinate descent, reweighted ?2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provides an extensive set of experiments to compare various algorithms from a computational point of view. The presentation of Optimization with Sparsity-Inducing Penalties is essentially based on existing literature, but the process of constructing a general framework leads naturally to new results, connections and points of view. It is an ideal reference on the topic for anyone working in machine learning and related areas.

Book Online Learning and Online Convex Optimization

Download or read book Online Learning and Online Convex Optimization written by Shai Shalev-Shwartz and published by Foundations & Trends. This book was released on 2012 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Online Learning and Online Convex Optimization is a modern overview of online learning. Its aim is to provide the reader with a sense of some of the interesting ideas and in particular to underscore the centrality of convexity in deriving efficient online learning algorithms.

Book Proximal Algorithms

Download or read book Proximal Algorithms written by Neal Parikh and published by Now Pub. This book was released on 2013-11 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proximal Algorithms discusses proximal operators and proximal algorithms, and illustrates their applicability to standard and distributed convex optimization in general and many applications of recent interest in particular. Much like Newton's method is a standard tool for solving unconstrained smooth optimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed versions of these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest involving large or high-dimensional datasets. Proximal methods sit at a higher level of abstraction than classical algorithms like Newton's method: the base operation is evaluating the proximal operator of a function, which itself involves solving a small convex optimization problem. These subproblems, which generalize the problem of projecting a point onto a convex set, often admit closed-form solutions or can be solved very quickly with standard or simple specialized methods. Proximal Algorithms discusses different interpretations of proximal operators and algorithms, looks at their connections to many other topics in optimization and applied mathematics, surveys some popular algorithms, and provides a large number of examples of proximal operators that commonly arise in practice.

Book Acceleration Methods

Download or read book Acceleration Methods written by Alexandre d'Aspremont and published by . This book was released on 2021-12-15 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph covers recent advances in a range of acceleration techniques frequently used in convex optimization. Using quadratic optimization problems, the authors introduce two key families of methods, namely momentum and nested optimization schemes. These methods are covered in detail and include Chebyshev Acceleration, Nonlinear Acceleration, Nesterov Acceleration, Proximal Acceleration and Catalysts and Restart Schemes.This book provides the reader with an in-depth description of the developments in Acceleration Methods since the early 2000s, whilst referring the reader back to underpinning earlier work for further understanding. This topic is important in the modern-day application of convex optimization techniques in many applicable areas.This book is an introduction to the topic that enables the reader to quickly understand the important principles and apply the techniques to their own research.

Book Applied Optimization

Download or read book Applied Optimization written by Ross Baldick and published by Cambridge University Press. This book was released on 2009-01-18 with total page 859 pages. Available in PDF, EPUB and Kindle. Book excerpt: The starting point in the formulation of any numerical problem is to take an intuitive idea about the problem in question and to translate it into precise mathematical language. This book provides step-by-step descriptions of how to formulate numerical problems and develops techniques for solving them. A number of engineering case studies motivate the development of efficient algorithms that involve, in some cases, transformation of the problem from its initial formulation into a more tractable form. Five general problem classes are considered: linear systems of equations, non-linear systems of equations, unconstrained optimization, equality-constrained optimization and inequality-constrained optimization. The book contains many worked examples and homework exercises and is suitable for students of engineering or operations research taking courses in optimization. Supplementary material including solutions, lecture slides and appendices are available online at www.cambridge.org/9780521855648.

Book Search and Optimization by Metaheuristics

Download or read book Search and Optimization by Metaheuristics written by Ke-Lin Du and published by Birkhäuser. This book was released on 2016-07-20 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.

Book Optimal Districting and Territory Design

Download or read book Optimal Districting and Territory Design written by Roger Z. Ríos-Mercado and published by Springer Nature. This book was released on 2020-02-04 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights recent advances in the field of districting, territory design, and zone design. Districting problems deal essentially with tactical decisions, and involve mainly dividing a set of geographic units into clusters or territories subject to some planning requirements. This book presents models, theory, algorithms (exact or heuristic), and applications that would bring research on districting systems up-to-date and define the state-of-the-art. Although papers have addressed real-world problems that require districting or territory division decisions, this is the first comprehensive book that directly addresses these problems. The chapters capture the diverse nature of districting applications, as the book is divided into three different areas of research. Part I covers recent up-to-date surveys on important areas of districting such as police districting, health care districting, and districting algorithms based on computational geometry. Part II focuses on recent advances on theory, modeling, and algorithms including mathematical programming and heuristic approaches, and finally, Part III contains successful applications in real-world districting cases.

Book Mechanical Design Optimization Using Advanced Optimization Techniques

Download or read book Mechanical Design Optimization Using Advanced Optimization Techniques written by R. Venkata Rao and published by Springer Science & Business Media. This book was released on 2012-01-14 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mechanical design includes an optimization process in which designers always consider objectives such as strength, deflection, weight, wear, corrosion, etc. depending on the requirements. However, design optimization for a complete mechanical assembly leads to a complicated objective function with a large number of design variables. It is a good practice to apply optimization techniques for individual components or intermediate assemblies than a complete assembly. Analytical or numerical methods for calculating the extreme values of a function may perform well in many practical cases, but may fail in more complex design situations. In real design problems, the number of design parameters can be very large and their influence on the value to be optimized (the goal function) can be very complicated, having nonlinear character. In these complex cases, advanced optimization algorithms offer solutions to the problems, because they find a solution near to the global optimum within reasonable time and computational costs. Mechanical Design Optimization Using Advanced Optimization Techniques presents a comprehensive review on latest research and development trends for design optimization of mechanical elements and devices. Using examples of various mechanical elements and devices, the possibilities for design optimization with advanced optimization techniques are demonstrated. Basic and advanced concepts of traditional and advanced optimization techniques are presented, along with real case studies, results of applications of the proposed techniques, and the best optimization strategies to achieve best performance are highlighted. Furthermore, a novel advanced optimization method named teaching-learning-based optimization (TLBO) is presented in this book and this method shows better performance with less computational effort for the large scale problems. Mechanical Design Optimization Using Advanced Optimization Techniques is intended for designers, practitioners, managers, institutes involved in design related projects, applied research workers, academics, and graduate students in mechanical and industrial engineering and will be useful to the industrial product designers for realizing a product as it presents new models and optimization techniques to make tasks easier, logical, efficient and effective. .

Book Cache Optimization Models and Algorithms

Download or read book Cache Optimization Models and Algorithms written by Georgios Paschos and published by . This book was released on 2020-08-20 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Caching refers to the act of replicating information at a faster (or closer) medium with the purpose of improving performance. This deceptively simple idea has given rise to some of the hardest optimization problems in the fields of computer systems, networking, and the Internet; many of which remain unsolved several years after their conception. While a wealth of research contributions exists from the topics of memory systems, data centers, Internet traffic, CDNs, and recently wireless networks, the literature is dispersed and overlapping at times. In this monograph, the authors focus on the fundamental underlying mathematical models, into a powerful framework for performing optimization of caching systems. In doing so they the present the reader with a solid background for the anticipated explosion in caching research, and provide a didactic view into how engineers have managed to infuse mathematical models into the study of caching over the last 40 years. Written by leading researchers from academia and industry, this monograph provides students, researchers and practicing engineers with a concise introduction to challenges and solutions for implementing caching in modern computing systems.