EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Trends in Computational Nanomechanics

Download or read book Trends in Computational Nanomechanics written by Traian Dumitrica and published by Springer Science & Business Media. This book was released on 2010-03-14 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Trends in Computational Nanomechanics reviews recent advances in analytical and computational modeling frameworks to describe the mechanics of materials on scales ranging from the atomistic, through the microstructure or transitional, and up to the continuum. The book presents new approaches in the theory of nanosystems, recent developments in theoretical and computational methods for studying problems in which multiple length and/or time scales must be simultaneously resolved, as well as example applications in nanomechanics. This title will be a useful tool of reference for professionals, graduates and undergraduates interested in Computational Chemistry and Physics, Materials Science, Nanotechnology.

Book Recent Advances in Computational Mechanics and Simulations

Download or read book Recent Advances in Computational Mechanics and Simulations written by Sandip Kumar Saha and published by Springer Nature. This book was released on 2020-11-13 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents selected papers from the 7th International Congress on Computational Mechanics and Simulation held at IIT Mandi, India. The papers discuss the development of mathematical models representing physical phenomena and applying modern computing methods and simulations to analyse them. The studies cover recent advances in the fields of nano mechanics and biomechanics, simulations of multiscale and multiphysics problems, developments in solid mechanics and finite element method, advancements in computational fluid dynamics and transport phenomena, and applications of computational mechanics and techniques in emerging areas. The volume will be of interest to researchers and academics from civil engineering, mechanical engineering, aerospace engineering, materials engineering/science, physics, mathematics and other disciplines.

Book Advanced Computational Nanomechanics

Download or read book Advanced Computational Nanomechanics written by Nuno Silvestre and published by John Wiley & Sons. This book was released on 2016-02-08 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains the latest research advances in computational nanomechanics in one comprehensive volume Covers computational tools used to simulate and analyse nanostructures Includes contributions from leading researchers Covers of new methodologies/tools applied to computational nanomechanics whilst also giving readers the new findings on carbon-based aggregates (graphene, carbon-nanotubes, nanocomposites) Evaluates the impact of nanoscale phenomena in materials

Book Multiscale Materials Modeling for Nanomechanics

Download or read book Multiscale Materials Modeling for Nanomechanics written by Christopher R. Weinberger and published by Springer. This book was released on 2016-08-30 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unique combination of chapters that together provide a practical introduction to multiscale modeling applied to nanoscale materials mechanics. The goal of this book is to present a balanced treatment of both the theory of the methodology, as well as some practical aspects of conducting the simulations and models. The first half of the book covers some fundamental modeling and simulation techniques ranging from ab-inito methods to the continuum scale. Included in this set of methods are several different concurrent multiscale methods for bridging time and length scales applicable to mechanics at the nanoscale regime. The second half of the book presents a range of case studies from a varied selection of research groups focusing either on a the application of multiscale modeling to a specific nanomaterial, or novel analysis techniques aimed at exploring nanomechanics. Readers are also directed to helpful sites and other resources throughout the book where the simulation codes and methodologies discussed herein can be accessed. Emphasis on the practicality of the detailed techniques is especially felt in the latter half of the book, which is dedicated to specific examples to study nanomechanics and multiscale materials behavior. An instructive avenue for learning how to effectively apply these simulation tools to solve nanomechanics problems is to study previous endeavors. Therefore, each chapter is written by a unique team of experts who have used multiscale materials modeling to solve a practical nanomechanics problem. These chapters provide an extensive picture of the multiscale materials landscape from problem statement through the final results and outlook, providing readers with a roadmap for incorporating these techniques into their own research.

Book Micromechanics and Nanoscale Effects

Download or read book Micromechanics and Nanoscale Effects written by Vasyl Michael Harik and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of the state-of-the-art reports on new developments in micromechanics and the modeling of nanoscale effects, and is a companion book to the recent Kluwer volume on nanomechanics and mul- scale modeling (it is entitled Trends in Nanoscale Mechanics). The two volumes grew out of a series of discussions held at NASA Langley Research Center (LaRC), lectures and other events shared by many researchers from the national research laboratories and academia. The key events include the 2001 Summer Series of Round-Table Discussions on Nanotechnology at ICASE Institute (NASA LaRC) organized by Drs. V. M. Harik and M. D. Salas and the 2002 NASA LaRC Workshop on Multi-scale Modeling. The goal of these interactions was to foster collaborations between academic researchers and the ICASE Institute (NASA LaRC), a universi- based institute, which has pioneered world-class computational, theoretical and experimental research in the disciplines that are important to NASA. Editors gratefully acknowledge help of Ms. E. Todd (ICASE, NASA LaRC), the ICASE Director M. D. Salas and all reviewers, in particular, Dr. B. Diskin (ICASE/NIA, NASA LaRC), Prof. R. Haftka (University of Florida), Dr. V. M. Harik (ICASE/Swales Aerospace, NASA LaRC), Prof.

Book Hybrid Particle continuum Methods in Computational Materials Physics

Download or read book Hybrid Particle continuum Methods in Computational Materials Physics written by Martin H. Müser and published by Forschungszentrum Jülich. This book was released on 2013 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Computational Nanomechanics

Download or read book Introduction to Computational Nanomechanics written by Shaofan Li and published by Cambridge University Press. This book was released on 2022-12-08 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: An original comprehensive guide on computational nanomechanics discussing basic concepts and implications in areas such as computational physics, materials, mechanics and engineering as well as several other interdisciplinary avenues. This book makes the underlying theory accessible to readers without specialised training or extensive background in quantum physics, statistical mechanics, or theoretical chemistry. It combines a careful treatment of theoretical concepts with a detailed tutorial on computer software and computing implementation, including multiscale simulation and computational statistical theory. Multidisciplinary perspectives are provided, yielding a true insight on the applications of computational nanomechanics across diverse engineering fields. The book can serve as a practical guide with step-by-step discussion of coding, example problems and case studies. This book will be essential reading for students new to the subject, as well as an excellent reference for graduates and researchers.

Book Introduction to Micromechanics and Nanomechanics

Download or read book Introduction to Micromechanics and Nanomechanics written by Shaofan Li and published by World Scientific Publishing Company. This book was released on 2008-07-28 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides both the theoretical foundation, as well as the authors' latest contributions to micromechanics and its applications in nanomechanics, nanocomposites, dislocation and thin film theories, and configurational mechanics theory. It serves primarily as a graduate level textbook, intended for first year graduate students in materials science, applied computational mechanics, nano-science and technology, and mechanical engineering. This book also serves as a research monograph by compiling recent developments in dislocation dynamics, numerical simulations of material failure, and homogenization theories.

Book Trends in Nanophysics

Download or read book Trends in Nanophysics written by Alexandru Aldea and published by Springer Science & Business Media. This book was released on 2010-08-05 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores a variety of diverse issues in nanotechnology, including radiation-induced polymerization, cross-linking and grafting; Mossbauer study of nanomaterials; biomedical applications of nanomaterials; graphene and carbon nanotubes; and many more.

Book Handbook of Micromechanics and Nanomechanics

Download or read book Handbook of Micromechanics and Nanomechanics written by Shaofan Li and published by CRC Press. This book was released on 2016-04-19 with total page 1256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest developments and applications of micromechanics and nanomechanics. It particularly focuses on some recent applications and impact areas of micromechanics and nanomechanics that have not been discussed in traditional micromechanics and nanomechanics books on metamaterials, micromechanics of ferroelectric/piezoelectric,

Book Nanotube Superfiber Materials

Download or read book Nanotube Superfiber Materials written by Noe T. Alvarez and published by Elsevier Inc. Chapters. This book was released on 2013-09-16 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon nanotubes (CNTs) have been at the frontier of nanotechnology research for the past two decades. The interest in CNTs is due to their unique physical and chemical properties, which surpass those of most other materials. To put CNTs into macroscale applications, the nanotubes can be spun to form continuous fiber materials. Thus far, the properties of the fibers are far below the properties of the individual nanotubes. If the electrical and mechanical properties of the fibers could be improved, the resulting superfiber materials would change the industry and society. For example, CNT materials might replace copper wires providing lighter, stronger cables for aerospace applications. The small size of individual nanotubes, and the mixture of different diameters and chiralities, limits the electrical conductivity of CNT fiber. A simple way to improve the electrical conductivity of CNT fibers is chemically doping the CNTs within the fibers. This chapter attempts to summarize, classify and provide a basic understanding of doping at the atomic and molecular levels. Characterization of doping and current results of our doping efforts are discussed.

Book Computational Approaches in Biomedical Nano Engineering

Download or read book Computational Approaches in Biomedical Nano Engineering written by Ayesha Sohail and published by John Wiley & Sons. This book was released on 2019-01-14 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprehensively and systematically treats modern understanding of the Nano-Bio-Technology and its therapeutic applications. The contents range from the nanomedicine, imaging, targeted therapeutic applications, experimental results along with modelling approaches. It will provide the readers with fundamentals on computational and modelling aspects of advanced nano-materials and nano-technology specifically in the field of biomedicine, and also provide the readers with inspirations for new development of diagnostic imaging and targeted therapeutic applications.

Book Nanotube Superfiber Materials

Download or read book Nanotube Superfiber Materials written by Mark Schulz and published by William Andrew. This book was released on 2013-09-16 with total page 861 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotube Superfiber Materials refers to different forms of macroscale materials with unique properties constructed from carbon nanotubes. These materials include nanotube arrays, ribbons, scrolls, yarn, braid, and sheets. Nanotube materials are in the early stage of development and this is the first dedicated book on the subject. Transitioning from molecules to materials is a breakthrough that will positively impact almost all industries and areas of society. Key properties of superfiber materials are high flexibility and fatigue resistance, high energy absorption, high strength, good electrical conductivity, high maximum current density, reduced skin and proximity effects, high thermal conductivity, lightweight, good field emission, piezoresistive, magnetoresistive, thermoelectric, and other properties. These properties will open up the door to dozens of applications including replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others. The scope of the book covers three main areas: Part I: Processing; Part II: Properties; and Part III: Applications. Processing involves nanotube synthesis and macro scale material formation methods. Properties covers the mechanical, electrical, chemical and other properties of nanotubes and macroscale materials. Different approaches to growing high quality long nanotubes and spinning the nanotubes into yarn are explained in detail. The best ideas are collected from all around the world including commercial approaches. Applications of nanotube superfiber cover a huge field and provides a broad survey of uses. The book gives a broad overview starting from bioelectronics to carbon industrial machines. - First book to explore the production and applications of macro-scale materials made from nano-scale particles - Sets out the processes for producing macro-scale materials from carbon nanotubes, and describes the unique properties of these materials - Potential applications for CNT fiber/yarn include replacing copper wire for power conduction, EMI shielding, coax cable, carbon biofiber, bullet-proof vests, impact resistant glass, wearable antennas, biomedical microdevices, biosensors, self-sensing composites, supercapacitors, superinductors, hybrid superconductor, reinforced elastomers, nerve scaffolding, energy storage, and many others

Book Variational Methods in Molecular Modeling

Download or read book Variational Methods in Molecular Modeling written by Jianzhong Wu and published by Springer. This book was released on 2016-12-17 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents tutorial overviews for many applications of variational methods to molecular modeling. Topics discussed include the Gibbs-Bogoliubov-Feynman variational principle, square-gradient models, classical density functional theories, self-consistent-field theories, phase-field methods, Ginzburg-Landau and Helfrich-type phenomenological models, dynamical density functional theory, and variational Monte Carlo methods. Illustrative examples are given to facilitate understanding of the basic concepts and quantitative prediction of the properties and rich behavior of diverse many-body systems ranging from inhomogeneous fluids, electrolytes and ionic liquids in micropores, colloidal dispersions, liquid crystals, polymer blends, lipid membranes, microemulsions, magnetic materials and high-temperature superconductors. All chapters are written by leading experts in the field and illustrated with tutorial examples for their practical applications to specific subjects. With emphasis placed on physical understanding rather than on rigorous mathematical derivations, the content is accessible to graduate students and researchers in the broad areas of materials science and engineering, chemistry, chemical and biomolecular engineering, applied mathematics, condensed-matter physics, without specific training in theoretical physics or calculus of variations.

Book Fatigue and Fracture of Nanostructured Materials

Download or read book Fatigue and Fracture of Nanostructured Materials written by Pasquale Cavaliere and published by Springer Nature. This book was released on 2020-10-27 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the main approaches for production and synthesis of nanostructured metals and alloys, taking into account the fatigue behavior of materials in additive manufactured components. Depending on the material type, form, and application, a deep discussion of fatigue properties and crack behavior is also provided. Pure nanostructured metals, complex alloys and composites are further considered. Prof. Cavaliere’s examination is supported by the most up-to-date understanding from the scientific literature along with a thorough presentation of theory. Bringing together the widest range of perspective on its topic, the book is ideal for materials researchers, professional engineers in industry, and students interested in nanostructured materials, fracture/fatigue mechanics, and additive manufacturing. Describes in detail the relevance of nanostructures in additive manufacturing technologies; Includes sufficient breadth and depth on theoretical modelling of fatigue and crack behavior for use in the classroom; Identifies many open questions regarding different theories through experimental finding; Contextualizes the latest scientific results for readers in industry.

Book Advances in Soft Matter Mechanics

Download or read book Advances in Soft Matter Mechanics written by Shaofan Li and published by Springer Science & Business Media. This book was released on 2012-04-24 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers developments in soft matter mechanics and physics from the perspective of applied and computational mechanics. It Includes a selection of recent works on the subject and details the application of soft matter mechanics on engineering problems.

Book Computational Continuum Mechanics of Nanoscopic Structures

Download or read book Computational Continuum Mechanics of Nanoscopic Structures written by Esmaeal Ghavanloo and published by Springer. This book was released on 2019-02-19 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive treatment of nonlocal elasticity theory as applied to the prediction of the mechanical characteristics of various types of biological and non-biological nanoscopic structures with different morphologies and functional behaviour. It combines fundamental notions and advanced concepts, covering both the theory of nonlocal elasticity and the mechanics of nanoscopic structures and systems. By reporting on recent findings and discussing future challenges, the book seeks to foster the application of nonlocal elasticity based approaches to the emerging fields of nanoscience and nanotechnology. It is a self-contained guide, and covers all relevant background information, the requisite mathematical and computational techniques, theoretical assumptions, physical methods and possible limitations of the nonlocal approach, including some practical applications. Mainly written for researchers in the fields of physics, biophysics, mechanics, and nanoscience, as well as computational engineers, the book can also be used as a reference guide for senior undergraduate and graduate students, as well as practicing engineers working in a range of areas, such as computational condensed matter physics, computational materials science, computational nanoscience and nanotechnology, and nanomechanics.