EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Transport Processes at Fluidic Interfaces

Download or read book Transport Processes at Fluidic Interfaces written by Dieter Bothe and published by Birkhäuser. This book was released on 2017-07-13 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are several physico-chemical processes that determine the behavior of multiphase fluid systems – e.g., the fluid dynamics in the different phases and the dynamics of the interface(s), mass transport between the fluids, adsorption effects at the interface, and transport of surfactants on the interface – and result in heterogeneous interface properties. In general, these processes are strongly coupled and local properties of the interface play a crucial role. A thorough understanding of the behavior of such complex flow problems must be based on physically sound mathematical models, which especially account for the local processes at the interface. This book presents recent findings on the rigorous derivation and mathematical analysis of such models and on the development of numerical methods for direct numerical simulations. Validation results are based on specifically designed experiments using high-resolution experimental techniques. A special feature of this book is its focus on an interdisciplinary research approach combining Applied Analysis, Numerical Mathematics, Interface Physics and Chemistry, as well as relevant research areas in the Engineering Sciences. The contributions originated from the joint interdisciplinary research projects in the DFG Priority Programme SPP 1506 “Transport Processes at Fluidic Interfaces.”

Book Interfacial Fluid Dynamics and Transport Processes

Download or read book Interfacial Fluid Dynamics and Transport Processes written by Ranga Narayanan and published by Springer. This book was released on 2013-06-29 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present set of lectures and tutorial reviews deals with various topical aspects related to instabilities of interfacial processes and driven flows from both the theoretical and experimental point of views. New research has been spurred by demands for many applications in material sciences (melting, solidification, electro deposition), biomedical engineering and processing in microgravity environments. This book is intended as both a modern source of reference for researchers in the field as well as an introduction to postgraduate students and non-specialists from related areas.

Book Investigation of the Influence of Vortex Structures on Transport Processes at Fluidic Interfaces

Download or read book Investigation of the Influence of Vortex Structures on Transport Processes at Fluidic Interfaces written by Sophie Rüttinger and published by . This book was released on 2018-12-28 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Methods for Complex Liquid Fluid Interfaces

Download or read book Computational Methods for Complex Liquid Fluid Interfaces written by Mohammad Taeibi Rahni and published by CRC Press. This book was released on 2015-11-11 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Methods for Complex Liquid-Fluid Interfaces highlights key computational challenges involved in the two-way coupling of complex liquid-fluid interfaces. The book covers a variety of cutting-edge experimental and computational techniques ranging from macro- to meso- and microscale approaches (including pivotal applications). As example

Book Transport Processes at Taylor Bubbles in Vertical Channels

Download or read book Transport Processes at Taylor Bubbles in Vertical Channels written by Sven Kastens and published by Cuvillier Verlag. This book was released on 2021-04-19 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas / liquid contact apparatuses are widely used in chemical, biochemical or pharmaceutical industry to provide and transfer gas species as reactant from the gaseous phase to pre-dissolved reactants in the liquid phase enabling a preferred reaction. The global and local transport are complex interlinked processes and therefore in practice in reactor design industry, mostly empirically correlated. For a secure control of the overall process and a more efficient reactor design, the local transport processes at gas / liquid interfaces need to be investigated in complexity reduced systems to be understood. Elongated bubbles, Taylor bubbles, in vertical channels 5.5 < D < 8 mm overcome the problem of dynamic shape deformation, complex 3D rise trajectories and they have a volume independent rise velocity, which make them the ideal experiment for reliable and reproducible investigations. Detailed optical measurements of global and local processes via high-speed Shadowgraphy, 2D2C PIV and p-2D LIF give new insights into the dependency of local bubble shape and global terminal rise velocity, establish a Sherwood correlation of shrinking CO2 bubbles in various channel sizes and shows the coupling of local transport phenomena at the bubble interface and the mixing in the wake region.

Book Interfacial Transport Processes and Rheology

Download or read book Interfacial Transport Processes and Rheology written by Howard Brenner and published by Elsevier. This book was released on 2013-10-22 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is designed to provide the theory, methods of measurement, and principal applications of the expanding field of interfacial hydrodynamics. It is intended to serve the research needs of both academic and industrial scientists, including chemical or mechanical engineers, material and surface scientists, physical chemists, chemical and biophysicists, rheologists, physiochemical hydrodynamicists, and applied mathematicians (especially those with interests in viscous fluid mechanics and continuum mechanics).As a textbook it provides materials for a one- or two-semester graduate-level course in interfacial transport processes. It may also be noted that, while separate practical and theoretical subdivisions of material have been introduced, a kind of cross-emphasis is often stressed: (i) to the academic scientist, or the importance of understanding major applications of interfacial transport; and (ii) to the industrial scientist, of the importance of understanding the underlying theory.

Book Laminar Flow and Convective Transport Processes

Download or read book Laminar Flow and Convective Transport Processes written by Howard Brenner and published by Elsevier. This book was released on 2013-10-22 with total page 761 pages. Available in PDF, EPUB and Kindle. Book excerpt: Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered. A unique feature of this book is its emphasis on scaling principles and the use of asymptotic methods, both as a means of solution and as a basis for qualitative understanding of the correlations that exist between independent and dependent dimensionless parameters in transport processes. Laminar Flow and Convective Transport Processes is suitable for use as a textbook for graduate courses in fluid mechanics and transport phenomena and also as a reference for researchers in the field.

Book Mathematical Fluid Dynamics  Present and Future

Download or read book Mathematical Fluid Dynamics Present and Future written by Yoshihiro Shibata and published by Springer. This book was released on 2016-12-01 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents original papers ranging from an experimental study on cavitation jets to an up-to-date mathematical analysis of the Navier-Stokes equations for free boundary problems, reflecting topics featured at the International Conference on Mathematical Fluid Dynamics, Present and Future, held 11–14 November 2014 at Waseda University in Tokyo. The contributions address subjects in one- and two-phase fluid flows, including cavitation, liquid crystal flows, plasma flows, and blood flows. Written by internationally respected experts, these papers highlight the connections between mathematical, experimental, and computational fluid dynamics. The book is aimed at a wide readership in mathematics and engineering, including researchers and graduate students interested in mathematical fluid dynamics.

Book Advanced Transport Phenomena

Download or read book Advanced Transport Phenomena written by L. Gary Leal and published by Cambridge University Press. This book was released on 2007-06-18 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.

Book Geometric Partial Differential Equations   Part I

Download or read book Geometric Partial Differential Equations Part I written by and published by Elsevier. This book was released on 2020-01-14 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: Besides their intrinsic mathematical interest, geometric partial differential equations (PDEs) are ubiquitous in many scientific, engineering and industrial applications. They represent an intellectual challenge and have received a great deal of attention recently. The purpose of this volume is to provide a missing reference consisting of self-contained and comprehensive presentations. It includes basic ideas, analysis and applications of state-of-the-art fundamental algorithms for the approximation of geometric PDEs together with their impacts in a variety of fields within mathematics, science, and engineering. About every aspect of computational geometric PDEs is discussed in this and a companion volume. Topics in this volume include stationary and time-dependent surface PDEs for geometric flows, large deformations of nonlinearly geometric plates and rods, level set and phase field methods and applications, free boundary problems, discrete Riemannian calculus and morphing, fully nonlinear PDEs including Monge-Ampere equations, and PDE constrained optimization Each chapter is a complete essay at the research level but accessible to junior researchers and students. The intent is to provide a comprehensive description of algorithms and their analysis for a specific geometric PDE class, starting from basic concepts and concluding with interesting applications. Each chapter is thus useful as an introduction to a research area as well as a teaching resource, and provides numerous pointers to the literature for further reading The authors of each chapter are world leaders in their field of expertise and skillful writers. This book is thus meant to provide an invaluable, readable and enjoyable account of computational geometric PDEs

Book Transport Processes in Chemically Reacting Flow Systems

Download or read book Transport Processes in Chemically Reacting Flow Systems written by Daniel E. Rosner and published by Courier Corporation. This book was released on 2012-04-30 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to the transport of energy, mass, and momentum in chemically reacting fluids for graduate or undergraduate students with no prior background in fluid mechanics. Solutions to selected exercises.

Book Topological Optimization and Optimal Transport

Download or read book Topological Optimization and Optimal Transport written by Maïtine Bergounioux and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-08-07 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: By discussing topics such as shape representations, relaxation theory and optimal transport, trends and synergies of mathematical tools required for optimization of geometry and topology of shapes are explored. Furthermore, applications in science and engineering, including economics, social sciences, biology, physics and image processing are covered. Contents Part I Geometric issues in PDE problems related to the infinity Laplace operator Solution of free boundary problems in the presence of geometric uncertainties Distributed and boundary control problems for the semidiscrete Cahn–Hilliard/Navier–Stokes system with nonsmooth Ginzburg–Landau energies High-order topological expansions for Helmholtz problems in 2D On a new phase field model for the approximation of interfacial energies of multiphase systems Optimization of eigenvalues and eigenmodes by using the adjoint method Discrete varifolds and surface approximation Part II Weak Monge–Ampere solutions of the semi-discrete optimal transportation problem Optimal transportation theory with repulsive costs Wardrop equilibria: long-term variant, degenerate anisotropic PDEs and numerical approximations On the Lagrangian branched transport model and the equivalence with its Eulerian formulation On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows Pressureless Euler equations with maximal density constraint: a time-splitting scheme Convergence of a fully discrete variational scheme for a thin-film equatio Interpretation of finite volume discretization schemes for the Fokker–Planck equation as gradient flows for the discrete Wasserstein distance

Book Process Analysis  Design  and Intensification in Microfluidics and Chemical Engineering

Download or read book Process Analysis Design and Intensification in Microfluidics and Chemical Engineering written by Santana, Harrson Silva and published by IGI Global. This book was released on 2019-01-18 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics represent great potential for chemical processes design, development, optimization, and chemical engineering bolsters the project design of industrial processes often found in large chemical plants. Together, microfluidics and chemical engineering can lead to a more complete and comprehensive process. Process Analysis, Design, and Intensification in Microfluidics and Chemical Engineering provides emerging research exploring the theoretical and practical aspects of microfluidics and its application in chemical engineering with the intention of building pathways for new processes and product developments in industrial areas. Featuring coverage on a broad range of topics such as design techniques, hydrodynamics, and numerical modelling, this book is ideally designed for engineers, chemists, microfluidics and chemical engineering companies, academicians, researchers, and students.

Book Transport Processes in Bubbles  Drops and Particles

Download or read book Transport Processes in Bubbles Drops and Particles written by Daniel DeKee and published by CRC Press. This book was released on 2002-06-14 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes the advances in the transport phenomena of particles, drops and bubbles in complex fluids. This book contains contributions from experts in areas such as particle deposition in membranes, flow of granular mixtures, food suspensions, foams, electro kinetic and thermo capillary driven flows, and two-phase flows.

Book Transport Phenomena in Multiphase Flows

Download or read book Transport Phenomena in Multiphase Flows written by Roberto Mauri and published by Springer Nature. This book was released on 2023-06-12 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a thorough presentation of the phenomena related to the transport of mass (with and without electric charge), momentum and energy. It lays all the basic physical principles, and then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively, represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and is used either for an introductory or for an advanced graduate course. The last six chapters are of interest to more advanced researchers who might be interested in applications in physics, mechanical engineering or biomedical engineering. In particular, this second edition of the book includes two chapters about electric migration, that is the transport of mass that takes place in a mixture under the action of electro-magnetic fields. Electric migration finds many applications in the modeling of energy storage devices, such as batteries and fuel cells. All chapters are complemented with solved exercises that are essential to complete the learning process.

Book Recent Developments of Mathematical Fluid Mechanics

Download or read book Recent Developments of Mathematical Fluid Mechanics written by Herbert Amann and published by Birkhäuser. This book was released on 2016-03-17 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.

Book Numerical Methods for Two phase Incompressible Flows

Download or read book Numerical Methods for Two phase Incompressible Flows written by Sven Gross and published by Springer Science & Business Media. This book was released on 2011-04-26 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.