EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Transport Phenomena and Living Systems

Download or read book Transport Phenomena and Living Systems written by Edwin N. Lightfoot and published by Wiley-Interscience. This book was released on 1973 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biotransport  Principles and Applications

Download or read book Biotransport Principles and Applications written by Robert J. Roselli and published by Springer Science & Business Media. This book was released on 2011-06-10 with total page 1293 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Biotransport Principles is a concise text covering the fundamentals of biotransport, including biological applications of: fluid, heat, and mass transport.

Book Transport Phenomena in Biological Systems

Download or read book Transport Phenomena in Biological Systems written by George A. Truskey and published by Prentice Hall. This book was released on 2009 with total page 889 pages. Available in PDF, EPUB and Kindle. Book excerpt: For one-semester, advanced undergraduate/graduate courses in Biotransport Engineering. Presenting engineering fundamentals and biological applications in a unified way, this text provides students with the skills necessary to develop and critically analyze models of biological transport and reaction processes. It covers topics in fluid mechanics, mass transport, and biochemical interactions, with engineering concepts motivated by specific biological problems.

Book The Physics of Living Systems

Download or read book The Physics of Living Systems written by Fabrizio Cleri and published by Springer. This book was released on 2016-10-08 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, physics in its many aspects (thermodynamics, mechanics, electricity, fluid dynamics) is the guiding light on a fascinating journey through biological systems, providing ideas, examples and stimulating reflections for undergraduate physics, chemistry and life-science students, as well as for anyone interested in the frontiers between physics and biology. Rather than introducing a lot of new information, it encourages young students to use their recently acquired knowledge to start seeing the physics behind the biology. As an undergraduate textbook in introductory biophysics, it includes the necessary background and tools, including exercises and appendices, to form a progressive course. In this case, the chapters can be used in the order proposed, possibly split between two semesters. The book is also an absorbing read for researchers in the life sciences who wish to refresh or go deeper into the physics concepts gleaned in their early years of scientific training. Less physics-oriented readers might want to skip the first chapter, as well as all the "gray boxes" containing the more formal developments, and create their own á-la-carte menu of chapters.

Book Transport Phenomena in the Cardiovascular System

Download or read book Transport Phenomena in the Cardiovascular System written by Stanley Middleman and published by John Wiley & Sons. This book was released on 1972 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biosimulation

    Book Details:
  • Author : Daniel A. Beard
  • Publisher : Cambridge University Press
  • Release : 2012-04-12
  • ISBN : 0521768233
  • Pages : 321 pages

Download or read book Biosimulation written by Daniel A. Beard and published by Cambridge University Press. This book was released on 2012-04-12 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on guide to devising, designing and analyzing simulations of biophysical processes for applications in biological and biomedical sciences. Practical examples are given throughout, representing real-world case studies of key application areas, and all data and complete codes for simulation and data analysis are provided online.

Book Nano and Bio Heat Transfer and Fluid Flow

Download or read book Nano and Bio Heat Transfer and Fluid Flow written by Majid Ghassemi and published by Academic Press. This book was released on 2017-03-15 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nano and Bio Heat Transfer and Fluid Flow focuses on the use of nanoparticles for bio application and bio-fluidics from an engineering perspective. It introduces the mechanisms underlying thermal and fluid interaction of nanoparticles with biological systems. This book will help readers translate theory into real world applications, such as drug delivery and lab-on-a-chip. The content covers how transport at the nano-scale differs from the macro-scale, also discussing what complications can arise in a biologic system at the nano-scale. It is ideal for students and early career researchers, engineers conducting experimental work on relevant applications, or those who develop computer models to investigate/design these systems. Content coverage includes biofluid mechanics, transport phenomena, micro/nano fluid flows, and heat transfer. Discusses nanoparticle applications in drug delivery Covers the engineering fundamentals of bio heat transfer and fluid flow Explains how to simulate, analyze, and evaluate the transportation of heat and mass problems in bio-systems

Book Principles and Models of Biological Transport

Download or read book Principles and Models of Biological Transport written by Morton H. Friedman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is designed for a first course in biological mass transport, and the material in it is presented at a level that is appropriate to advanced undergraduates or early graduate level students. Its orientation is somewhat more physical and mathematical than a biology or standard physiology text, reflecting its origins in a transport course that I teach to undergraduate (and occasional graduate) biomedical engineering students in the Whiting School of Engineering at Johns Hopkins. The audience for my cours- and presumably for this text - also includes chemical engineering undergraduates concentrating in biotechnology, and graduate students in biophysics. The organization of this book differs from most texts that at tempt to present an engineering approach to biological transport. What distinguishes biological transport from other mass transfer processes is the fact that biological transport is biological. Thus, we do not start with the engineering principles of mass transport (which are well presented elsewhere) and then seek biological ap plications of these principles; rather, we begin with the biological processes themselves, and then develop the tools that are needed to describe them. As a result, more physiology is presented in this text than is often found in books dealing with engineering applica tions in the life sciences.

Book Modeling of Microscale Transport in Biological Processes

Download or read book Modeling of Microscale Transport in Biological Processes written by Sid M. Becker and published by Academic Press. This book was released on 2017-01-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling of Microscale Transport in Biological Processes provides a compendium of recent advances in theoretical and computational modeling of biotransport phenomena at the microscale. The simulation strategies presented range from molecular to continuum models and consider both numerical and exact solution method approaches to coupled systems of equations. The biological processes covered in this book include digestion, molecular transport, microbial swimming, cilia mediated flow, microscale heat transfer, micro-vascular flow, vesicle dynamics, transport through bio-films and bio-membranes, and microscale growth dynamics. The book is written for an advanced academic research audience in the fields of engineering (encompassing biomedical, chemical, biological, mechanical, and electrical), biology and mathematics. Although written for, and by, expert researchers, each chapter provides a strong introductory section to ensure accessibility to readers at all levels.

Book Introductory Transport Phenomena

Download or read book Introductory Transport Phenomena written by R. Byron Bird and published by Wiley Global Education. This book was released on 2015-02-13 with total page 786 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Transport Phenomena by R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, and Daniel Klingenberg is a new introductory textbook based on the classic Bird, Stewart, Lightfoot text, Transport Phenomena. The authors’ goal in writing this book reflects topics covered in an undergraduate course. Some of the rigorous topics suitable for the advanced students have been retained. The text covers topics such as: the transport of momentum; the transport of energy and the transport of chemical species. The organization of the material is similar to Bird/Stewart/Lightfoot, but presentation has been thoughtfully revised specifically for undergraduate students encountering these concepts for the first time. Devoting more space to mathematical derivations and providing fuller explanations of mathematical developments—including a section of the appendix devoted to mathematical topics—allows students to comprehend transport phenomena concepts at an undergraduate level.

Book Stochastic Transport in Complex Systems

Download or read book Stochastic Transport in Complex Systems written by Andreas Schadschneider and published by Elsevier. This book was released on 2010-10-01 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of the book provides a pedagogical introduction to the physics of complex systems driven far from equilibrium. In this part we discuss the basic concepts and theoretical techniques which are commonly used to study classical stochastic transport in systems of interacting driven particles. The analytical techniques include mean-field theories, matrix product ansatz, renormalization group, etc. and the numerical methods are mostly based on computer simulations. In the second part of the book these concepts and techniques are applied not only to vehicular traffic but also to transport and traffic-like phenomena in living systems ranging from collective movements of social insects (for example, ants) on trails to intracellular molecular motor transport. These demonstrate the conceptual unity of the fundamental principles underlying the apparent diversity of the systems and the utility of the theoretical toolbox of non-equilibrium statistical mechanics in interdisciplinary research far beyond the traditional disciplinary boundaries of physics. Leading industry experts provide a broad overview of the interdisciplinary nature of physics Presents unified descriptions of intracellular, ant, and vehicular traffic from a physics point of view Applies theoretical methods in practical everyday situations Reference and guide for physicists, engineers and graduate students

Book Transport Phenomena

Download or read book Transport Phenomena written by Robert Byron Bird and published by . This book was released on 1960 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Heat Transfer and Fluid Flow in Biological Processes

Download or read book Heat Transfer and Fluid Flow in Biological Processes written by Sid M. Becker and published by Academic Press. This book was released on 2014-12-31 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies Reviews the most recent advances in modeling techniques

Book Transport Phenomena in Food Processing

Download or read book Transport Phenomena in Food Processing written by Jorge Welti-Chanes and published by CRC Press. This book was released on 2016-04-19 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specifically developed for food engineers, this is an in-depth reference book that focuses on transport phenomena in food preservation. First it reviews the fundamental concepts regarding momentum, heat, and mass transfer. Then the book examines specific applications of these concepts into a variety of traditional and novel processes and products.

Book Transport in Biological Media

Download or read book Transport in Biological Media written by Sid Becker and published by Newnes. This book was released on 2013-05-21 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transport in Biological Media is a solid resource of mathematical models for researchers across a broad range of scientific and engineering problems such as the effects of drug delivery, chemotherapy, or insulin intake to interpret transport experiments in areas of cutting edge biological research. A wide range of emerging theoretical and experimental mathematical methodologies are offered by biological topic to appeal to individual researchers to assist them in solving problems in their specific area of research. Researchers in biology, biophysics, biomathematics, chemistry, engineers and clinical fields specific to transport modeling will find this resource indispensible. Provides detailed mathematical model development to interpret experiments and provides current modeling practices Provides a wide range of biological and clinical applications Includes physiological descriptions of models

Book Transport Phenomena in Biomedical Engineering

Download or read book Transport Phenomena in Biomedical Engineering written by Robert A. Peattie and published by CRC Press. This book was released on 2012-11-20 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design, analysis and simulation of tissue constructs is an integral part of the ever-evolving field of biomedical engineering. The study of reaction kinetics, particularly when coupled with complex physical phenomena such as the transport of heat, mass and momentum, is required to determine or predict performance of biologically-based systems wheth

Book Complex Fluids in Biological Systems

Download or read book Complex Fluids in Biological Systems written by Saverio E. Spagnolie and published by Springer. This book was released on 2014-11-27 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as an introduction to the continuum mechanics and mathematical modeling of complex fluids in living systems. The form and function of living systems are intimately tied to the nature of surrounding fluid environments, which commonly exhibit nonlinear and history dependent responses to forces and displacements. With ever-increasing capabilities in the visualization and manipulation of biological systems, research on the fundamental phenomena, models, measurements, and analysis of complex fluids has taken a number of exciting directions. In this book, many of the world’s foremost experts explore key topics such as: Macro- and micro-rheological techniques for measuring the material properties of complex biofluids and the subtleties of data interpretation Experimental observations and rheology of complex biological materials, including mucus, cell membranes, the cytoskeleton, and blood The motility of microorganisms in complex fluids and the dynamics of active suspensions Challenges and solutions in the numerical simulation of biologically relevant complex fluid flows This volume will be accessible to advanced undergraduate and beginning graduate students in engineering, mathematics, biology, and the physical sciences, but will appeal to anyone interested in the intricate and beautiful nature of complex fluids in the context of living systems.