EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Transport of dirac fermions on the surface of strong topological insulator and graphene

Download or read book Transport of dirac fermions on the surface of strong topological insulator and graphene written by Arijit Kundu and published by . This book was released on 2012 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Topological Insulators

    Book Details:
  • Author : Joel E. Moore
  • Publisher : Elsevier Inc. Chapters
  • Release : 2013-11-23
  • ISBN : 0128086831
  • Pages : 31 pages

Download or read book Topological Insulators written by Joel E. Moore and published by Elsevier Inc. Chapters. This book was released on 2013-11-23 with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of the topological insulator phase that emerges via spin-orbit coupling in three-dimensional materials is introduced, stressing its relationship to earlier topological phases in two dimensions. An unusual surface state with an odd number of “Dirac points” appears as a consequence of bulk topological invariants of the band structure. A different theoretical approach is then presented, based on the Berry phase of Bloch electrons, in order to illustrate a deep connection to the orbital contribution to the magnetoelectric polarizability in all materials. The unique features of transport in the topological insulator surface state are reviewed with an emphasis on possible experiments. The final section discusses briefly connections to interacting phases including topological superconductors and some recent efforts to construct fractional topological insulators in three dimensions.

Book Strong and Weak Topology Probed by Surface Science

Download or read book Strong and Weak Topology Probed by Surface Science written by Christian Pauly and published by Springer. This book was released on 2016-01-22 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Christian Pauly demonstrates the strong topological properties of the technologically relevant phase change materials Sb2Te3 and Ge2Sb2Te5 by using two powerful techniques for mapping the surface electronic structure: scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES). In the case of a phase change material, this opens up the possibility of switching between an insulating amorphous and a conducting topological phase on nanosecond-time scales. Moreover, the author presents first experimental results of a weak topological insulator, namely on the bismuth-based graphene-like sheet system Bi14Rh3I9, revealing a topologically protected one-dimensional edge channel as its fingerprint. The edge state is as narrow as 0.8 nm, making it extremely attractive to device physics. Those strong and weak topological insulators are a new phase of quantum matter giving rise to robust boundary states which are protected from backscattering and localization.

Book Topological Insulators and Topological Superconductors

Download or read book Topological Insulators and Topological Superconductors written by B. Andrei Bernevig and published by Princeton University Press. This book was released on 2013-04-07 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.

Book Quantum Transport of Two species Dirac Fermions in Dual gated Three dimensional Topological Insulators

Download or read book Quantum Transport of Two species Dirac Fermions in Dual gated Three dimensional Topological Insulators written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological insulators are a novel class of quantum matter with a gapped insulating bulk, yet gapless spin-helical Dirac fermion conducting surface states. Here, we report local and non-local electrical and magneto transport measurements in dual-gated BiSbTeSe2 thin film topological insulator devices, with conduction dominated by the spatially separated top and bottom surfaces, each hosting a single species of Dirac fermions with independent gate control over the carrier type and density. We observe many intriguing quantum transport phenomena in such a fully tunable two-species topological Dirac gas, including a zero-magnetic-field minimum conductivity close to twice the conductance quantum at the double Dirac point, a series of ambipolar two-component half-integer Dirac quantum Hall states and an electron-hole total filling factor zero state (with a zero-Hall plateau), exhibiting dissipationless (chiral) and dissipative (non-chiral) edge conduction, respectively. As a result, such a system paves the way to explore rich physics, ranging from topological magnetoelectric effects to exciton condensation.

Book Strained HgTe CdTe Topological Insulators  Toward Spintronic Applications

Download or read book Strained HgTe CdTe Topological Insulators Toward Spintronic Applications written by Candice Thomas and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: With graphene-like transport properties governed by massless Dirac fermions and a topological protection preventing from backscattering phenomena, topological insulators, characterized by an insulating bulk and conducting surfaces, are of main interest to build low power consumption electronic building-blocks of primary importance for future electronics.Indeed, the absence of disorder, the generation of dissipation-less spin-polarized current or even the possibility to generate pure spin current without magnetic materials are some of the promises of these new materials.The objective of this PhD thesis has been to experimentally demonstrate the eligibility of HgTe three dimensional topological insulator system for applications and especially for spintronics.To do so, strong efforts have been dedicated to the improvement of the growth process by molecular beam epitaxy.Chemical composition, strain, defect density and sharpness of the HgTe interfaces have been identified as the major parameters of study and improvement to ensure HgTe inverted band structure, bulk gap opening and to emphasize the resulting topological surface state electronic properties. Verification of the topological nature of this system has then been performed using low temperature magneto-transport measurements of Hall bars designed with various HgTe thicknesses. It is worth noting that the high desorption rate of Hg has made the nanofabrication process more complex and required the development of a low temperature process adapted to this constraint. While the thicker samples have evidenced very complex transport signatures that need to be further investigated and understood, the thickness reduction has led to the suppression of any additional contributions, such as bulk or even side surfaces, and the demonstration of quantum Hall effect with vanishing resistance. Consequently, we have managed to demonstrate direct evidences of Dirac fermions by temperature dependent analysis of the quantum Hall effect. The next step has been to use the topological properties and especially the locking predicted between momentum and spin to test the HgTe potential for spintronics. Spin pumping experiments have demonstrated the power of these topological structures for spin injection and detection. Moreover, the implementation of HgTe into simple p-n junction has also been investigated to realize a first spin-based logic element.

Book Reshaping of Dirac Cones in Topological Insulators and Graphene

Download or read book Reshaping of Dirac Cones in Topological Insulators and Graphene written by Álvaro Díaz Fernández and published by Springer Nature. This book was released on 2020-12-09 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dirac cones are ubiquitous to non-trivial quantum matter and are expected to boost and reshape the field of modern electronics. Particularly relevant examples where these cones arise are topological insulators and graphene. From a fundamental perspective, this thesis proposes schemes towards modifying basic properties of these cones in the aforementioned materials. The thesis begins with a brief historical introduction which is followed by an extensive chapter that endows the reader with the basic tools of symmetry and topology needed to understand the remaining text. The subsequent four chapters are devoted to the reshaping of Dirac cones by external fields and delta doping. At all times, the ideas discussed in the second chapter are always a guiding principle to understand the phenomena discussed in those four chapters. As a result, the thesis is cohesive and represents a major advance in our understanding of the physics of Dirac materials.

Book Quantized Phenomena of Transport and Magneto Optics in Magnetic Topological Insulator Heterostructures

Download or read book Quantized Phenomena of Transport and Magneto Optics in Magnetic Topological Insulator Heterostructures written by Masataka Mogi and published by Springer Nature. This book was released on 2022-05-07 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents experimental studies on emergent transport and magneto-optical properties in three-dimensional topological insulators with two-dimensional Dirac fermions on their surfaces. Designing magnetic heterostructures utilizing a cutting-edge growth technique (molecular beam epitaxy) stabilizes and manifests new quantization phenomena, as confirmed by low-temperature electrical transport and time-domain terahertz magneto-optical measurements. Starting with a review of the theoretical background and recent experimental advances in topological insulators in terms of a novel magneto-electric coupling, the author subsequently explores their magnetic quantum properties and reveals topological phase transitions between quantum anomalous Hall insulator and trivial insulator phases; a new topological phase (the axion insulator); and a half-integer quantum Hall state associated with the quantum parity anomaly. Furthermore, the author shows how these quantum phases can be significantly stabilized via magnetic modulation doping and proximity coupling with a normal ferromagnetic insulator. These findings provide a basis for future technologies such as ultra-low energy consumption electronic devices and fault-tolerant topological quantum computers.

Book Topological Insulators

    Book Details:
  • Author : Gregory Tkachov
  • Publisher : CRC Press
  • Release : 2015-10-14
  • ISBN : 9814613266
  • Pages : 180 pages

Download or read book Topological Insulators written by Gregory Tkachov and published by CRC Press. This book was released on 2015-10-14 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of dynamic developments that have occurred in condensed matter physics after the recent discovery of a new class of electronic materials: topological insulators. A topological insulator is a material that behaves as a band insulator in its interior, while acting as a metallic conductor at its surface. The surface current car

Book Disorder Effects in Dirac Heterostructures    Martin Alexander Rodriguez Vega

Download or read book Disorder Effects in Dirac Heterostructures Martin Alexander Rodriguez Vega written by Martin Alexander Rodriguez-Vega (! Ph. D., ! author) and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High Magnetic Field Science and Its Application in the United States

Download or read book High Magnetic Field Science and Its Application in the United States written by National Research Council and published by National Academies Press. This book was released on 2013-11-25 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Committee to Assess the Current Status and Future Direction of High Magnetic Field Science in the United States was convened by the National Research Council in response to a request by the National Science Foundation. This report answers three questions: (1) What is the current state of high-field magnet science, engineering, and technology in the United States, and are there any conspicuous needs to be addressed? (2) What are the current science drivers and which scientific opportunities and challenges can be anticipated over the next ten years? (3) What are the principal existing and planned high magnetic field facilities outside of the United States, what roles have U.S. high field magnet development efforts played in developing those facilities, and what potentials exist for further international collaboration in this area? A magnetic field is produced by an electrical current in a metal coil. This current exerts an expansive force on the coil, and a magnetic field is "high" if it challenges the strength and current-carrying capacity of the materials that create the field. Although lower magnetic fields can be achieved using commercially available magnets, research in the highest achievable fields has been, and will continue to be, most often performed in large research centers that possess the materials and systems know-how for forefront research. Only a few high field centers exist around the world; in the United States, the principal center is the National High Magnetic Field Laboratory (NHMFL). High Magnetic Field Science and Its Application in the United States considers continued support for a centralized high-field facility such as NHFML to be the highest priority. This report contains a recommendation for the funding and siting of several new high field nuclear magnetic resonance magnets at user facilities in different regions of the United States. Continued advancement in high-magnetic field science requires substantial investments in magnets with enhanced capabilities. High Magnetic Field Science and Its Application in the United States contains recommendations for the further development of all-superconducting, hybrid, and higher field pulsed magnets that meet ambitious but achievable goals.

Book Spin Helical Dirac Fermions in 3D Topological Insulator Quantum Wires

Download or read book Spin Helical Dirac Fermions in 3D Topological Insulator Quantum Wires written by Romain Giraud and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The next generation of electronic devices based on 3D topological insulators will be developed from advanced functional nanostructures and heterostructures. Toward this goal, single-crystalline nanowires offer interesting opportunities for new developments due to the strong quantum confinement of spin-helical surface Dirac fermions and to the possibility to realize core-shell lateral nanostructures adapted to the control of the electro-chemical potential at the interface with a topological insulator. Here, we review the specific transport properties of 3D topological insulator quantum wires and the influence of disorder. Having a large energy quantization, weakly-coupled Dirac surface modes are prone to quasi-ballistic transport, with some analogies to carbon nanotubes but with spin-textured quantum states weakly coupled by non-magnetic disorder. Due to a small interaction with their environment, these surface modes are good candidates to realize novel quantum spintronic devices, spanning from ballistic spin conductors to localized spin filters. A specific topological mode also holds promises to control chiral edge states and Majorana bound states in truly 1D quantum wires, being tunable with a magnetic field or an electrical gate. Challenges toward these goals are briefly discussed, as well as the need for novel functional heterostructures.

Book Topological Aspects of Condensed Matter Physics

Download or read book Topological Aspects of Condensed Matter Physics written by Claudio Chamon and published by Oxford University Press. This book was released on 2017 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains lecture notes by world experts on topological quantum phenomena, which are being developed at unprecedented rates in novel material systems.

Book Topological States of Matter

Download or read book Topological States of Matter written by Vincenzo Parente and published by LAP Lambert Academic Publishing. This book was released on 2013 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract from dissertation: My research program is focused on the study of elastic deformation and topological defects in two materials: graphene and topological insulators. In both systems at low energies the electrons have a nearly linear spectrum, i.e. they behave like relativistic fermions. This allows the study of the effects of defects and deformations on the dynamics of electrons trough the formalism of Dirac equation on curved space-time. In this setting it's possible to derive correction to observables properties of the systems like the conductivity for example. In the case of graphene I have derived the contribution to conductivity in the Born approximation of the metric arising from the so-called bumps and made a comparison with the scattering on the gauge potential arising from the elastic deformation. A particular defect, the edge dislocation, is found to be a possible responsible for the behaviour of the conductivity at low energies. The topological insulators are a class of band insulators showing gapless edge states, capable of conduction. This situation is similar to Quantum Hall Effect, both physically and formally. Indeed, as in QHE topological invariants (Chern numbers) classify the behaviour of the material. I am thus focused on the study of these material both formally, on the ground of differential geometry, and physically, studying topological defect in topological insulators. Further investigation has been devoted to the analysis of electron-phonon interaction at the surface of a 3D TI, analysing superconductive instability.

Book 2D Dirac Materials

Download or read book 2D Dirac Materials written by Desalegne Bekuretsion Teweldebrhan and published by . This book was released on 2011 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon has been reaching physical limits as the semiconductor industry moves to smaller device feature sizes, increased integration densities and faster operation speeds. There is a strong need to engineer alternative materials, which can become foundation of new computational paradigms or lead to other applications such as efficient solid-state energy conversion. Recently discovered Dirac materials, which are characterized by the liner electron dispersion, are examples of such alternative materials. In this dissertation, I investigate two representatives of Dirac materials - graphene and topological insulators. Specifically, I focus on the (i) effects of electron beam irradiation on graphene properties and (ii) electronic and thermal characteristics of exfoliated films of Bi [subscript 2] Te [subscript 3] -family of topological insulators. I carried out Raman investigation of changes in graphene crystal lattice induced by the low and medium energy electron-beam irradiation (5.20 keV). It was found that radiation exposures result in appearance of the disorder D band around 1345 cm [superscript -1]. The dependence of the ratio of the intensities of D and G peaks, I(D)/I(G), on the irradiation dose is non-monotonic suggesting graphene.s transformation to polycrystalline and then to disordered state. By controlling the irradiation dose one can change the carrier mobility and increase the resistance at the minimum conduction point. The obtained results may lead to new methods of defect engineering of graphene properties. They also have important implications for fabrication of graphene nanodevices, which involve electron beams. Bismuth telluride and related compounds are the best thermoelectric materials known today. Recently, it was determined that they reveal the topological insulator properties. We succeeded in the first "graphene-like" exfoliation of large-area crystalline films and ribbons of Bi [subscript 2] Te [subscript 3] with the thickness going down to a single quintuple. The presence of van der Waals gaps allowed us to disassemble Bi [subscript 2] Te [subscript 3] crystal into the five mono-atomic sheets consisting of Te [superscript (1)] -Bi-Te [superscript (2)] -Bi-Te [superscript (1)]. The exfoliated films had extremely low thermal conductivity and electrical resistance in the range required for thermoelectric applications. The obtained results may pave the way for producing Bi [subscript 2] Te [subscript 3] films and stacked superlattices with strong quantum confinement of charge carriers and predominantly surface transport, and allow one to obtain theoretically predicted order-of-magnitude higher thermoelectric figure-of-merit.