Download or read book Ultra High Field Magnetic Resonance Imaging written by Pierre-Marie Robitaille and published by Springer Science & Business Media. This book was released on 2007-12-31 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: The foundation for understanding the function and dynamics of biological systems is not only knowledge of their structure, but the new methodologies and applications used to determine that structure. This volume in Biological Magnetic Resonance emphasizes the methods that involve Ultra High Field Magnetic Resonance Imaging. It will interest researchers working in the field of imaging.
Download or read book RF Current Source Drive and Decoupling Technique for Parallel Transmit Arrays in Magnetic Resonance Imaging written by Won-Je Lee and published by . This book was released on 2008 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Contrast Enhanced Clinical Magnetic Resonance Imaging written by Val M. Runge and published by University Press of Kentucky. This book was released on 1997 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book MRI from Picture to Proton written by Donald W. McRobbie and published by Cambridge University Press. This book was released on 2017-04-13 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: MR is a powerful modality. At its most advanced, it can be used not just to image anatomy and pathology, but to investigate organ function, to probe in vivo chemistry, and even to visualise the brain thinking. However, clinicians, technologists and scientists struggle with the study of the subject. The result is sometimes an obscurity of understanding, or a dilution of scientific truth, resulting in misconceptions. This is why MRI from Picture to Proton has achieved its reputation for practical clarity. MR is introduced as a tool, with coverage starting from the images, equipment and scanning protocols and traced back towards the underlying physics theory. With new content on quantitative MRI, MR safety, multi-band excitation, Dixon imaging, MR elastography and advanced pulse sequences, and with additional supportive materials available on the book's website, this new edition is completely revised and updated to reflect the best use of modern MR technology.
Download or read book Medical Imaging Systems written by Andreas Maier and published by Springer. This book was released on 2018-08-02 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book gives a complete and comprehensive introduction to the fields of medical imaging systems, as designed for a broad range of applications. The authors of the book first explain the foundations of system theory and image processing, before highlighting several modalities in a dedicated chapter. The initial focus is on modalities that are closely related to traditional camera systems such as endoscopy and microscopy. This is followed by more complex image formation processes: magnetic resonance imaging, X-ray projection imaging, computed tomography, X-ray phase-contrast imaging, nuclear imaging, ultrasound, and optical coherence tomography.
Download or read book EMBC 2004 written by IEEE Engineering in Medicine and Biology Society. Conference and published by . This book was released on 2004 with total page 908 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Introduction to Functional Magnetic Resonance Imaging written by Richard B. Buxton and published by Cambridge University Press. This book was released on 2009-08-27 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functional Magnetic Resonance Imaging (fMRI) has become a standard tool for mapping the working brain's activation patterns, both in health and in disease. It is an interdisciplinary field and crosses the borders of neuroscience, psychology, psychiatry, radiology, mathematics, physics and engineering. Developments in techniques, procedures and our understanding of this field are expanding rapidly. In this second edition of Introduction to Functional Magnetic Resonance Imaging, Richard Buxton – a leading authority on fMRI – provides an invaluable guide to how fMRI works, from introducing the basic ideas and principles to the underlying physics and physiology. He covers the relationship between fMRI and other imaging techniques and includes a guide to the statistical analysis of fMRI data. This book will be useful both to the experienced radiographer, and the clinician or researcher with no previous knowledge of the technology.
Download or read book Electromagnetics in Magnetic Resonance Imaging written by Christopher M. Collins and published by Morgan & Claypool Publishers. This book was released on 2016-03-01 with total page 82 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.
Download or read book The Principles of Nuclear Magnetism written by A. Abragam and published by Oxford University Press. This book was released on 1961 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Principles of Nuclear Magnetism
Download or read book Quantitative Magnetic Resonance Imaging written by Nicole Seiberlich and published by Academic Press. This book was released on 2020-11-18 with total page 1094 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Download or read book Magnetic Resonance Imaging written by Robert W. Brown and published by John Wiley & Sons. This book was released on 2014-06-23 with total page 976 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.
Download or read book Experimental Pulse NMR written by Eiichi Fukushima and published by CRC Press. This book was released on 2018-03-08 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about pulse nuclear magnetic resonance (NMR), with its techniques, the information to be obtained, and practical advice on performing experiments. The emphasis is on the motivation and physical ideas underlying NMR experiments and the actual techniques, including the hardware used. The level is generally suitable for those to whom pulse NMR is a new technique, be they students in chemistry or physics on the one hand and research workers in biology, geology, or agriculture, on the other. The book can be used for a senior or first year graduate course where it could supplement the standard NMR texts.
Download or read book Handbook of MRI Pulse Sequences written by Matt A. Bernstein and published by Elsevier. This book was released on 2004-09-21 with total page 1041 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. - Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI - Provides self-contained sections for individual techniques - Can be used as a quick reference guide or as a resource for deeper study - Includes both non-mathematical and mathematical descriptions - Contains numerous figures, tables, references, and worked example problems
Download or read book Magnetic Resonance Imaging written by Stewart C. Bushong and published by Elsevier Health Sciences. This book was released on 2003-01-01 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dette er en grundlæggende lærebog om konventionel MRI samt billedteknik. Den begynder med et overblik over elektricitet og magnetisme, herefter gives en dybtgående forklaring på hvordan MRI fungerer og her diskuteres de seneste metoder i radiografisk billedtagning, patientsikkerhed m.v.
Download or read book RF Coils for MRI written by J. Thomas Vaughan and published by John Wiley & Sons. This book was released on 2012-12-19 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI. To date there is no single reference aimed at teaching the art of applications guided coil design for use in MRI. This RF Coils for MRI handbook is intended to become this reference. Heretofore, much of the know-how of RF coil design is bottled up in various industry and academic laboratories around the world. Some of this information on coil technologies and applications techniques has been disseminated through the literature, while more of this knowledge has been withheld for competitive or proprietary advantage. Of the published works, the record of technology development is often incomplete and misleading, accurate referencing and attribution assignment being tantamount to admission of patent infringement in the commercial arena. Accordingly, the literature on RF coil design is fragmented and confusing. There are no texts and few courses offered to teach this material. Mastery of the art and science of RF coil design is perhaps best achieved through the learning that comes with a long career in the field at multiple places of employment...until now. RF Coils for MRI combines the lifetime understanding and expertise of many of the senior designers in the field into a single, practical training manual. It informs the engineer on part numbers and sources of component materials, equipment, engineering services and consulting to enable anyone with electronics bench experience to build, test and interface a coil. The handbook teaches the MR system user how to safely and successfully implement the coil for its intended application. The comprehensive articles also include information required by the scientist or physician to predict respective experiment or clinical performance of a coil for a variety of common applications. It is expected that RF Coils for MRI becomes an important resource for engineers, technicians, scientists, and physicians wanting to safely and successfully buy or build and use MR coils in the clinic or laboratory. Similarly, this guidebook provides teaching material for students, fellows and residents wanting to better understand the theory and operation of RF coils. Many of the articles have been written by the pioneers and developers of coils, arrays and probes, so this is all first hand information! The handbook serves as an expository guide for hands-on radiologists, radiographers, physicians, engineers, medical physicists, technologists, and for anyone with interests in building or selecting and using RF coils to achieve best clinical or experimental results. About EMR Handbooks / eMagRes Handbooks The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this Handbook and the complete content of eMagRes at your fingertips! Visit: www.wileyonlinelibrary.com/ref/eMagRes View other eMagRes publications here
Download or read book Ultra Low Field Nuclear Magnetic Resonance written by Robert Kraus Jr. and published by Oxford University Press. This book was released on 2014-02-26 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to introduce the reader to the field of NMR/MRI at very low magnetic fields, from milli-Tesla to micro-Tesla, the ultra-low field (ULF) regime. The book is focused on applications to imaging the human brain, and hardware methods primarily based upon pre-polarization methods and SQUID-based detection. The goal of the text is to provide insight and tools for the reader to better understand what applications are best served by ULF NMR/MRI approaches. A discussion of the hardware challenges, such as shielding, operation of SQUID sensors in a dynamic field environment, and pulsed magnetic field generation are presented. One goal of the text is to provide the reader a framework of understanding the approaches to estimation and mitigation of low signal-to-noise and long imaging time, which are the main challenges. Special attention is paid to the combination of MEG and ULF MRI, and the benefits and challenges presented by trying to accomplish both with the same hardware. The book discusses the origin of unique relaxation contrast at ULF, and special considerations for image artifacts and how to correct them (i.e. concomitant gradients, ghost artifacts). A general discussion of MRI, with special consideration to the challenges of imaging at ULF and unique opportunities in pulse sequences, is presented. The book also presents an overview of some of the primary applications of ULF NMR/MRI being pursued.
Download or read book The Physics and Mathematics of MRI written by Richard Ansorge and published by Morgan & Claypool Publishers. This book was released on 2016-11-01 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Resonance Imaging is a very important clinical imaging tool. It combines different fields of physics and engineering in a uniquely complex way. MRI is also surprisingly versatile, 'pulse sequences' can be designed to yield many different types of contrast. This versatility is unique to MRI. This short book gives both an in depth account of the methods used for the operation and construction of modern MRI systems and also the principles of sequence design and many examples of applications. An important additional feature of this book is the detailed discussion of the mathematical principles used in building optimal MRI systems and for sequence design. The mathematical discussion is very suitable for undergraduates attending medical physics courses. It is also more complete than usually found in alternative books for physical scientists or more clinically orientated works.