EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Transition metal catalyzed C C Bonds Formation Via Transfer Hydrogenation

Download or read book Transition metal catalyzed C C Bonds Formation Via Transfer Hydrogenation written by Gang Wang (Ph. D.) and published by . This book was released on 2017 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: Redox-triggered carbonyl addition via transfer hydrogenation, which enables direct primary alcohol C-H functionalization to form C-C bond, avoids usage of premetalated reagents or discrete alcohol to aldehyde redox reactions. Moreover, step-economy could be greatly improved by site-selective transformations of polyfunctional molecules due to bypassing the need to install and remove protecting groups. However, the redox site-selective transformations still pose a significant challenge in the area of synthetic organic chemistry. Efforts have been focused on the development of iridium catalyzed transfer hydrogenative coupling reactions of primary alcohols with different allyl donors through carbonyl addition in a site-selective manner as well as ruthenium catalyzed regioselective hydrohydroxyalkylation of primary alcohols with a basic feedstock-styrene. Additionally, studies towards the total synthesis of type I polyketide natural product (+)-SCH 351448 in the most concise route is presented.

Book Transition Metal catalyzed Carbon carbon Bond Formation Utilizing Transfer Hydrogenation

Download or read book Transition Metal catalyzed Carbon carbon Bond Formation Utilizing Transfer Hydrogenation written by Timothy Patrick Montgomery and published by . This book was released on 2015 with total page 1092 pages. Available in PDF, EPUB and Kindle. Book excerpt: A central tenant of organic synthesis is the construction of carbon-carbon bonds. One of the traditional methods for carrying out such transformations is that of carbonyl addition. Unfortunately, traditional carbonyl addition chemistry suffers various drawbacks: preactivation, moisture sensitivity, and the generation of stoichiometric organometallic waste. The research presented in this dissertation focuses on the development of methods that make use of nucleophile-electrophile pairs generated in situ via transfer hydrogenation, which allow the formation of carbonyl or imine addition products from the alcohol or amine oxidation level; streamlining the construction of complex molecules from simple, readily available starting materials. Additionally, studies toward the total synthesis of the fibrinogen receptor inhibitor tetrafibricin, utilizing the methods developed in catalytic carbon-carbon bond formation through the addition, transfer or removal of hydrogen, are presented.

Book Transition Metal Catalyzed C C Bond Formation Via Transfer Hydrogenation

Download or read book Transition Metal Catalyzed C C Bond Formation Via Transfer Hydrogenation written by Hiroki Sato (Ph. D. in chemistry) and published by . This book was released on 2018 with total page 1616 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transition Metal Catalyzed C C Bond Formation Under Transfer Hydrogenation Conditions

Download or read book Transition Metal Catalyzed C C Bond Formation Under Transfer Hydrogenation Conditions written by Joyce Chi Ching Leung and published by . This book was released on 2013 with total page 902 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon-carbon bond forming reactions are fundamental transformations for constructing structurally complex organic building blocks, especially in the realm of natural products synthesis. Classical protocols for forming a C-C bond typically require the use of stoichiometrically preformed organometallic reagents, constituting a major drawback for organic synthesis on process scale. Since the emergence of transition metal catalysis in hydrogenation and hydrogenative C-C coupling reactions, atom and step economy have become important considerations in the development of sustainable methods. In the Krische laboratory, our goal is to utilize abundant, renewable feedstocks, so that the reactions can proceed in an efficient and atom-economical manner. Our research focuses on developing new C-C bond forming protocols that transcend the use of stoichiometric, preformed organometallic reagents, in which [pi]-unsaturates can be employed as surrogates to discrete premetallated reagents. Under transition metal catalyzed transfer hydrogenation conditions, alcohols can engage in C-C coupling, avoiding unnecessary redox manipulations prior to carbonyl addition. Stereoselective variants of these reactions are also under extensive investigation to effect stereo-induction by way of chiral motifs found in ligands and counterions. The research presented in this dissertation represents the development of a new class of C-C bond forming transformations useful for constructing synthetic challenging molecules. Development of transfer hydrogenative C-C bond forming reactions in the form of carbonyl additions such as carbonyl allylation, carbonyl propargylation, carbonyl vinylation etc. are discussed in detail. Additionally, these methods avoid the use of stoichiometric chiral allenylmetal, propargylmetal or vinylmetal reagents, respectively, accessing diastereo- and enantioenriched products of carbonyl additions in the absence of stoichiometric organometallic byproducts. By exploiting the atom-economical transfer hydrogenative carbonyl addition protocols using ruthenium and iridium, preparations of important structural motifs that are abundant in natural products, such as allylic alcohols, homoallylic alcohols and homopropargylic alcohols, become more feasible and accessible.

Book Development of Neutral Redox Carbon carbon Bond Forming Reactions Via Transition Metal catalyzed Transfer Hydrogenation

Download or read book Development of Neutral Redox Carbon carbon Bond Forming Reactions Via Transition Metal catalyzed Transfer Hydrogenation written by Khoa Dang Nguyen (Ph. D.) and published by . This book was released on 2017 with total page 1316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since C-C bonds form the backbone of every organic molecule and reside at the heart of chemical science, the development of new efficient methods for promoting C-C bond formation is of great significance. Inspired and expanded from traditional Grignard reactions, the work presented in this dissertation focuses on metal catalyzed neutral redox-triggered carbonyl addition via transfer hydrogenation. Advancing the native reducing capability of alcohols, employment of catalytic transition metals enables the formation of nucleophile-electrophile pairs in situ, en route to the products of formal alcohol C-H functionalization. These redox-triggered reactions circumvent the stoichiometric metallated byproduct waste and streamline the construction of complex molecules from simple and/or readily available feedstocks. The research reported herein discloses new developed methodologies of ruthenium and iridium catalyzed coupling reactions of primary and secondary alcohols with various pi-unsaturates. These studies contribute to the growing body of redox-triggered alcohol C-C couplings - new carbonyl addition chemistry that extends beyond the use of premetalated reagents.

Book Transition Metal Catalyzed Redox Triggered C   C Bond Forming Reactions of Alcohols Via Transfer Hydrogenation

Download or read book Transition Metal Catalyzed Redox Triggered C C Bond Forming Reactions of Alcohols Via Transfer Hydrogenation written by Boyoung Park and published by . This book was released on 2016 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbonyl addition is one of the fundamental reactions forming C–C bonds in organic chemistry to construct structurally complex organic molecules, in particular natural products, from small molecules. For this useful carbonyl addition, transition metal catalyzed redox-triggered C–C bond forming reactions of alcohols have been developed via transfer hydrogenation. Combined redox events are more efficient in terms of step- and atom-economy by delivering nucleophile-electrophile pairs in situ from [pi]-unsaturates and alcohols, respectively. Furthermore, transition metal catalyzed redox-triggered C–C couplings bypass the need of stoichiometric (organo)metallic reagents. This dissertation shows the development of new methodologies for this goal including prenylation, vinylation, alkylation and allylation using various ruthenium, osmium and iridium catalysts.

Book Transition Metal catalyzed Reductive C C Bond Formation Under Hydrogenation and Transfer Hydrogenation Conditions

Download or read book Transition Metal catalyzed Reductive C C Bond Formation Under Hydrogenation and Transfer Hydrogenation Conditions written by Ming-yu Ngai and published by . This book was released on 2008 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon-carbon bond forming reactions are vital to the synthesis of natural products and pharmaceuticals. In 2003, the 200 best selling prescription drugs reported in Med Ad News are all organic compounds. Synthesizing these compounds involves many carbon-carbon bond forming processes, which are not trivial and typically generate large amounts of waste byproducts. Thus, development of an atom economical and environmentally benign carbon-carbon bond forming methodology is highly desirable. Hydrogenation is one of the most powerful catalytic reactions and has been utilized extensively in industry. Although carbon-carbon bond forming reactions under hydrogenation conditions, such as, alkene hydroformylation and the Fischer-Tropsch reaction are known, they are limited to the coupling of unsaturated hydrocarbons to carbon monoxide. Recently, a breakthrough was made by the Krische group, who demonstrated that catalytic hydrogenative C-C bond forming reactions can be extended to the coupling partners other than carbon monoxide. This discovery has led to the development of a new class of carbon-carbon bond forming reactions. Herein, an overview of transition metal-catalyzed reductive couplings of [pi]-unsaturated systems employing various external reductants is summarized in Chapter 1. Chapters 2-4 describe a series of rhodium- and iridium-catalyzed asymmetric hydrogenative couplings of various alkynes to a wide range of imines and carbonyl compounds. These byproduct-free transformations provide a variety of optically enriched allylic amines and allylic alcohols, which are found in numerous natural products, and are used as versatile precursors for the synthesis of many biologically active compounds. Transfer hydrogenation represents another important class of reactions in organic chemistry. This process employs hydrogen sources other than gaseous dihydrogen, such as isopropanol. The Krische group succeeded in developing a new family of transfer hydrogenative carbon-carbon bond formation reactions. Chapter 5 presents two novel ruthenium- and iridium-catalyzed transfer hydrogenative carbonyl allylation reactions. The catalytic system employing iridium complexes enables highly enantioselective carbonyl allylation from both the alcohol and aldehyde oxidation level. These systems define a departure from the use of preformed organometallic reagents in carbonyl additions that transcends the boundaries of oxidation level.

Book Development of New Transition Metal Catalyzed C C Bond Forming Reactions and Their Application Toward Natural Product Synthesis

Download or read book Development of New Transition Metal Catalyzed C C Bond Forming Reactions and Their Application Toward Natural Product Synthesis written by Abbas Hassan and published by . This book was released on 2011 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Michael J. Krische research group we are developing new transition metal catalyzed Carbon-Carbon (C-C) forming reactions focusing on atom economy and byproduct free, environmental friendly approaches. We have developed a broad family of C-C bond forming hydrogenations with relative and absolute stereocontrol which provide an alternative to stoichiometric organometallic reagents in certain carbonyl and imine additions. Inspiring from the group work my goal was to develop new reactions, extend the scope of our group chemistry and their application towards synthesis of biologically active natural products. I have been part of enantioselective Rh catalyzed Aldol reaction of vinyl ketones to different aldehydes. Also, we have found that iridium catalyzed transfer hydrogenation of allylic acetates in the presence of aldehydes or alcohols results in highly enantioselective carbonyl allylation under the conditions of transfer hydrogenative. Based on this reactivity a concise enantio- and diastereoselective synthesis of 1,3-polyols was achieved via iterative chain elongation and bidirectional iterative asymmetric allylation was performed, which enables the rapid assembly of 1,3-polyol substructures with exceptional levels of stereocontrol. The utility of this approach stems from the ability to avoid the use of chirally modified allylmetal reagents, which require multistep preparation, and the ability to perform chain elongation directly from the alcohol oxidation level. This approach was utilized for the total synthesis of (+)-Roxaticin from 1,3-propanediol in 20 longest linear steps and a total number of 29 manipulations. Further, advancements were made in iridium catalyzed C-C bond formation under transfer hydrogenation. While methallyl acetate does not serve as an efficient allyl donor, the use of more reactive leaving group in methallyl chloride compensate for the shorter lifetime of the more highly substituted olefin [pi]-complex. Based on this insight into the requirements of the catalytic process, highly enantioselective Grignard-Nozaki-Hiyama methallylation is achieved from the alcohol or aldehyde oxidation levels. Also, a catalytic method for enantioselective vinylogous Reformatsky- type aldol addition was developed in which asymmetric carbonyl addition occurs with equal facility from the alcohol or aldehyde oxidation level. Good to excellent levels of regioselectivity and uniformly high levels of enantioselectivity were observed across a range of alcohols and aldehydes.

Book Transition Metal catalyzed Reductive C C Bond Forming Hydrogenation transfer Hydrogenation and Applications in the Total Synthesis of     roxaticin

Download or read book Transition Metal catalyzed Reductive C C Bond Forming Hydrogenation transfer Hydrogenation and Applications in the Total Synthesis of roxaticin written by Soo Bong Han and published by . This book was released on 2010 with total page 860 pages. Available in PDF, EPUB and Kindle. Book excerpt: By simply hydrogenating enones in the presence of aldehydes at ambient temperature and pressure, aldol adducts are generated under neutral conditions in the absence of any stoichiometric byproducts. Using cationic rhodium complexes modified by tri(2-furyl)phosphine, highly syn-diastereoselective reductive aldol additions of vinyl ketones are achieved. Finally, using novel monodentate TADDOL-like phosphonite ligands, the first highly diastereo- and enantioselective reductive aldol couplings of vinyl ketones were devised. These studies, along with other works from our laboratory, demonstrate that organometallics arising transiently in the course of catalytic hydrogenation offer byproduct-free alternatives to preformed organometallic reagents employed in classical carbonyl addition processes. Existing methods for enantioselective carbonyl allylation, crotylation and tert-prenylation require stoichiometric generation of pre-metallated nucleophiles, and often employ stoichiometric chiral modifiers. Under the conditions of transfer hydrogenation employing an ortho-cyclometallated iridium C, O-benzoate catalyst, enantioselective carbonyl allylations, crotylations and tert-prenylations are achieved in the absence of stoichiometric metallic reagents or stoichiometric chiral modifiers. Moreover, under transfer hydrogenation conditions, primary alcohols function dually as hydrogen donors and aldehyde precursors, enabling enantioselective carbonyl addition directly from the alcohol oxidation level.

Book C C Bond Activation

    Book Details:
  • Author : Guangbin Dong
  • Publisher : Springer
  • Release : 2014-09-18
  • ISBN : 364255055X
  • Pages : 265 pages

Download or read book C C Bond Activation written by Guangbin Dong and published by Springer. This book was released on 2014-09-18 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students

Book Transition Metal Catalyzed Carbonyl Additions Under the Conditions of Transfer Hydrogenation

Download or read book Transition Metal Catalyzed Carbonyl Additions Under the Conditions of Transfer Hydrogenation written by Ryan Lloyd Patman and published by . This book was released on 2011 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The efficient construction of complex organic molecules mandates that an assortment of methods for forming C-C bonds be available to the practicing synthetic chemist. The addition of carbon based nucleophiles to carbonyl compounds represents a broad class of reactions used to achieve this goal. Traditional methodology requires the use of stoichiometrically preformed organometallic reagents as nucleophiles in this type of reaction. However, due to the moisture sensitivity, excessive preactivation and inevitable generation of stoichiometric waste required for the use of these reagents, alternative methods have become a focus of the synthetic organic community. The research presented in this dissertation describes a new class of C-C bond forming reactions enabled through catalytic transfer hydrogenation. Here, the development and implementation of efficient green methods for carbonyl addition employing [pi]-unsaturates as surrogates to preformed organometallic reagents is described. Additionally, this research describes the first systematic studies toward using alcohols as electrophiles in carbonyl allylation, propargylation and vinylation reactions.

Book Transition Metal Catalyzed Hydrogenative and Transfer Hydrogenative C C Bond Formation

Download or read book Transition Metal Catalyzed Hydrogenative and Transfer Hydrogenative C C Bond Formation written by Eduardas Skucas and published by . This book was released on 2009 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Carbon-carbon bond formation is one the fundamental reactions in organic synthesis. The quest for the development of new and more efficient processes for the construction of this bond has been an ongoing focus for years. The transformations that permit the use of simple precursors to access complex structural architectures in the absence of stoichiometric quantities by-products are highly desirable. Hydrogen is a cheapest and cleanest reductant available to the mankind. The catalytic hydrogenation has been widely utilized in the industry, however the construction of the carbon-carbon bond under hydrogenative conditions has been achieved only for alkene hydroformylations and Fisher-Tropsh process and limited to the use of carbon monoxide. The extension of the hydrogenative carbon-carbon bond formations beyond aforementioned processes would be of a great significance to the synthetic community. The overview of allene use in the metal catalyzed reactions to achieve carbonyl and imine allylation and vinylation is presented in Chapter 1. The following chapter vii discusses the development of metal catalyzed hydrogenative and transfer hydrogenative coupling of allenes and carbonyl compounds to afford allylation products. These studies have resulted in the development of the first carbonyl allylation from the alcohol oxidation level. Chapter 3 discusses efforts towards achieving highly enantioselective hydrogenative coupling of alkynes to carbonyl compounds.

Book Enantioselective C C Bond Forming Reactions

Download or read book Enantioselective C C Bond Forming Reactions written by and published by Elsevier. This book was released on 2023-12-01 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enantioselective C-C Bond Forming Reactions: From Metal Complex-, Organo-, and Bio-catalyzed Perspectives, Volume 73 in the Advances in Catalysis series, highlights new advances in the field, with this new volume presenting interesting chapters on topics such as An introduction to Chirality, Metal-catalyzed stereoselective C-C-bond forming reactions, Enantioselective C-C bond forming reactions promoted by organocatalysts based on unnatural amino acid derivatives, Enantioselective C-C bond formation in complex multicatalytic system, Gold-based multicatalytic systems for enantioselective C-C Bond forming reactions, Novel enzymatic tools for C-C bond formation through the development of new-to-nature biocatalysis, and more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in Advances in Catalysis serials Updated release includes the latest information in the field

Book Transition Metal Catalyzed Carbene Transformations

Download or read book Transition Metal Catalyzed Carbene Transformations written by Jianbo Wang and published by John Wiley & Sons. This book was released on 2022-05-16 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an up-to-date overview of the rapidly growing field of carbene transformations Carbene transformations have had an enormous impact on catalysis and organometallic chemistry. With the growth of transition metal-catalyzed carbene transformations in recent decades, carbene transformations are today an important compound class in organic synthesis as well as in the pharmaceutical and agrochemical industries. Edited by leading experts in the field, Transition Metal-Catalyzed Carbene Transformations is a thorough summary of the most recent advances in the rapidly expanding research area. This authoritative volume covers different reaction types such as ring forming reactions and rearrangement reactions, details their conditions and properties, and provides readers with accurate information on a wide range of carbene reactions. Twelve in-depth chapters address topics including carbene C-H bond insertion in alkane functionalization, the application of engineered enzymes in asymmetric carbene transfer, progress in transition-metal-catalyzed cross-coupling using carbene precursors, and more. Throughout the text, the authors highlight novel catalytic systems, transformations, and applications of transition-metal-catalyzed carbene transfer. Highlights the dynamic nature of the field of transition-metal-catalyzed carbene transformations Summarizes the catalytic radical approach for selective carbene cyclopropanation, high enantioselectivity in X-H insertions, and bio-inspired carbene transformations Introduces chiral N,N'-dioxide and chiral guanidine-based catalysts and different transformations with gold catalysis Discusses approaches in cycloaddition reactions with metal carbenes and polymerization with carbene transformations Outlines multicomponent reactions through gem-difunctionalization and transition-metal-catalyzed cross-coupling using carbene precursors Transition Metal-Catalyzed Carbene Transformations is essential reading for all chemists involved in organometallics, including organic and inorganic chemists, catalytic chemists, and chemists working in industry.

Book C X Bond Formation

    Book Details:
  • Author : Arkadi Vigalok
  • Publisher : Springer
  • Release : 2010-06-30
  • ISBN : 3642120733
  • Pages : 198 pages

Download or read book C X Bond Formation written by Arkadi Vigalok and published by Springer. This book was released on 2010-06-30 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Kilian Muñiz: Transition Metal Catalyzed Electrophilic Halogenation of C-H bonds in alpha-Position to Carbonyl Groups; Arkadi Vigalok * and Ariela W Kaspi: Late Transition Metal-Mediated Formation of Carbon-Halogen Bonds; Paul Bichler and Jennifer A. Love*: Organometallic Approaches to Carbon-Sulfur Bond Formation; David S. Glueck: Recent Advances in Metal-Catalyzed C-P Bond Formation; Andrei N. Vedernikov: C-O Reductive Elimination from High Valent Pt and Pd Centers; Lukas Hintermann: Recent Developments in Metal-Catalyzed Additions of Oxygen Nucleophiles to Alkenes and Alkynes; Moris S. Eisen: Catalytic C-N, C-O and C-S bond formation promoted by organoactinide complexes.

Book Transition Metal Catalyzed Reductive Couplings Under Hydrogenative and Transfer Hydrogenative Conditions

Download or read book Transition Metal Catalyzed Reductive Couplings Under Hydrogenative and Transfer Hydrogenative Conditions written by Vanessa Monet Williams and published by . This book was released on 2010 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Environmental concerns have birthed an awareness of how we conduct ourselves as citizens of this planet. To reduce environmental impact, we have learned that we must be responsible stewards in all ranges of life: from buying locally grown food to how scientific research and industrial processes are executed. In the realm of chemical research, "green chemistry" has initiated the development of new, sustainable methods that make use of atom economy, step economy, and utilize renewable materials to minimize waste and production of toxic by-products. The formation of carbon-carbon bonds lies at the very heart of organic synthesis, and traditional methods for forming such bonds generally require the use of at least one stoichiometrically preformed organometallic reagent. This corresponds to at least one equivalent of metallic waste byproduct. The in situ formation of alkyl metal nucleophiles for carbonyl additions via hydrogenation of [pi]-unsaturates represents an alternative to use of preformed organometallic reagents. Comprising nearly 90% of the atoms in the universe, hydrogen is vastly abundant and very cheap. The Krische group seeks to contribute new technologies which make use of catalytic hydrogenation and transfer hydrogenation in the reductive coupling of basic chemical feedstocks.